Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HFI-1 gene has key role in both oxygen sensing, heat shock pathway

30.10.2006
Could become new therapeutic target to protect health, fight cancer

University of Oregon researchers have found an unexpected regulatory link between cellular responses to hypoxia and heat shock. Central to the discovery is a gene known as Hypoxia-Inducible Factor-1 (HIF-1) that is critical for both normal and pathological changes, making it a potential target for both health promotion and cancer therapies.

In their study, researchers used microarray technology to observe the activity of genes found in the genome of the fruit fly (Drosophila). With it, they watched as the activity of heat shock proteins was turned on under conditions of low oxygen, or hypoxia. A microarray allows researchers to place tens of thousands of genes on 1.5-inch-square slides and study them under a microscope.

"These are proteins that were previously known to turn up under conditions of heat shock," said Eric Johnson, a professor in the UO Institute of Molecular Biology. "Now they are coming into view in hypoxia conditions as well."

... more about:
»HIF-1 »Hypoxia »Johnson »Oxygen »conditions »sensing »shock

When Johnson's team manipulated the genes to knock out the activity of HIF-1, the change dramatically lowered the presence of heat shock proteins. Over-activation of HIF-1 is often seen in a wide variety of cancers.

"We've found that there is more complexity to how a cell responds to a change in the environment than what we had long suspected," he said. "Instead of having a simple sensing and response process, there are sensing, calibrations, fine-tuning and responses that occur. These connections can now be targeted for therapies."

The findings of the research, which was supported by an American Cancer Society Research Scholar Grant to Johnson, appear online in advance of regular publication in the Journal of Biological Chemistry.

"This HIF-1 activity was somewhat surprising, because people in the past have often thought that these different pathways that sense environmental change have been separate entities," Johnson said. "It has been assumed that different pathways responded to different conditions, but we've found that the regulator of low oxygen response, HIF-1, actually goes over and cranks up the regulator to the heat shock response."

Understanding and targeting the role of HIF-1 could prove beneficial in turning away oxygen from cancerous cells, choking them off by not allowing oxygen in, Johnson said. The rush of oxygen back into cells after a period of hypoxia also works against wound healing.

In healthy cells, the researchers theorize, HIF-1's turning on of heat shock proteins is beneficial, because the proteins appear to prepare the cell for the return of oxygen, which can cause proteins in the cell to unfold. The heat shock proteins activated by HIF-1 help to refold proteins to ensure a healthy cellular response. "It's a very clever system," Johnson said. "Instead of targeting one of the heat shock proteins, we should consider targeting HIF-1, which controls all of their activity during hypoxia."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: HIF-1 Hypoxia Johnson Oxygen conditions sensing shock

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>