Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


China leads GM revolution


China hopes GM crops will feed its growing population.
© Corbis

Government funding puts Chinese plant biotechnology second only to US

While westerners vacillate about the risks and benefits of genetically modified (GM) crops, China is embracing the technology. A new survey shows that the Chinese are working on more plant biotechnology products than anyone outside North America1.

Chinese research institutes claim to have developed 141 GM plants, 65 of which have been approved for release into the environment. Scott Rozelle, an agricultural economist at the University of California, Davis carried out the survey.

China’s GM success challenges the concern that developing countries, which stand to benefit most from such crops, cannot afford technologies produced in the West.

"We keep getting fed this line that developing countries won’t receive the benefits of biotechnology, instead they’re deciding for themselves," says plant geneticist Nigel Halford of the Institute of Arable Crops Research in Long Ashton, England.

For a developing country China invests heavily in GM technology: spending $112 million in 1999 compared to about $15 million in India and Brazil, the other developing world leaders. By contrast the U.S. spends around $2 to $3 billion.

China’s GM research programmes are entirely government funded. The foods being modified reflect the concern that current food production will not fill the hungry mouths of its future population.

In the West, the GM crops that have gained farmers’ acceptance are those that simply improve profits. Instead, Chinese researchers seem to be focusing on creating better food crops such as disease- or drought-resistant rice, wheat and potatoes. Says Rozelle: "Researchers are not overwhelmingly motivated to capture financial return on the technologies."

If China’s GM crops do fill the food gap, their other GM innovations could end up being exported, suspects Rozelle. China may well become the world leader in exporting GM-crop technology to other developing countries. "There have already been sales between China and south and southeast Asian countries," he says.

Food safe

Whatever the potential benefits of genetic modification, environmental and food safety concerns loom large. China has strict regulations regarding the testing of GM crops before release into the environment, but "less has been done on consumer safety", admits Rozelle. "My gut feeling is that most Chinese look to the US for guidance in this area," he says.

Freer regulations in China may be borne out in the figures. China’s plant biotechnology industry is in its infancy compared to America’s yet already has 65 plants licensed for environmental release. Fewer than 50 have been approved in the U.S.

And the developing world’s investment in agricultural biotechnology could be drawing important resources away from research into other farming practices that may be better in the long term, argue GM sceptics.

"Biotechnology may well become another short-term solution to long-term problems," says Jane Rissler of the Union of Concerned Scientists in Washington DC.

There are other low-cost solutions to problems that GM technologies seek to overcome, Rissler points out. For example, planting different varieties of rice together to combat disease would also benefit from more research in China2.


  1. Huang, J., Rozelle, S., Pray, C. & Wang, Q. Plant biotechnology in China. Science, 295, 674 - 677, (2002).
  2. Zhu, Y. et al. Genetic diversity and disease control in rice. Nature, 406, 718 - 722, (2000).

TOM CLARKE | © Nature News Service
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>