Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop New Treatments for Alzheimer’s Disease

27.10.2006
Scientists at the University of Liverpool have created a new chemical compound that could be developed into a drug treatment for Alzheimer’s disease.

The research team has used a family of long chain sugars called Heparan Sulphates (HS), found on nearly every cell of the body, to produce a new compound that can prevent the formation of clumps of small proteins that form in the brain. These clumps or ‘plaques’ disrupt the normal function of cells leading to progressive memory loss which is characteristic of Alzheimer’s disease.

The clumps are formed from a small protein fragment called Amyloid-beta (A-beta) peptide released from its ‘parent’ protein - amyloid precursor protein (APP). This process requires the action of an enzyme called beta-secetase (BACE), which is critical in clipping up the APP to form the smaller A-beta fragments.

Professor Jerry Turnbull and Dr Ed Yates, from the University’s School of Biological Sciences, have discovered that the HS sugars may play a key role in limiting the development of Alzheimer’s disease. The sugars stick to the BACE enzyme and reduce its ability to ‘clip’ the A-beta peptide, thus controlling the amount of A-beta peptide available to form damaging plaques in brain tissue.

... more about:
»A-beta »Alzheimer »Fragment »Peptide »compound »enzyme

Professor Turnbull said: “We have developed a new class of compounds called ‘engineered heparins’ that could possibly be developed into drugs to stop A-beta peptides in the brain from forming and for the first time treat the underlying cause of Alzheimer’s. The compound, based on the blood thinning drug, heparin, has modified chemical structures designed to optimise their desired activities and reduce potential side effects.

“The compounds work by blocking the beta-secretase enzyme, responsible for snipping proteins into smaller fragments. Despite its central importance to the disease, there are currently no drug treatments which target this enzyme because it has proved difficult to find inhibitors using traditional drug discovery approaches. The new compounds, based on the body’s natural substances, may provide a novel route to effective treatments for this debilitating disease.”

A spin-out company, IntelliHep Ltd, has also been founded to explore the commercial opportunities of developing engineering heparans as new drugs against Alzheimer’s and other important medical conditions.

The research, funded by the Medical Research Council and the Biotechnology and Biological Sciences Research Council, is published in the Journal of Medicinal Chemistry.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

Further reports about: A-beta Alzheimer Fragment Peptide compound enzyme

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>