Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groups and grumps: Study identifies 'sociality' neurons

25.10.2006
A University of California, San Diego study has for the first time identified brain cells that influence whether birds of a feather will, or will not, flock together.

Led by James Goodson, associate professor of psychology and neuroscience, and detailed in this week's early online edition of the Proceedings of the National Academy of Sciences, the research demonstrates that vasotocin neurons in the medial extended amygdala respond differently to social cues in birds that live in colonies compared to their more solitary cousins.

Vasotocin neurons appear, according to the study, to selectively promote positive affiliation. The gregarious species also have greater numbers of the neurons and their baseline activity is about twice as high, putting the birds in a kind of perpetual "social mood."

"These findings," Goodson said, "address the fundamental question of sociality: Why are some animal species highly social while others seem to have little or no tolerance for others?

... more about:
»Goodson »finch »neurons »species »vasotocin »waxbill

"And while the observations were made in birds, they should apply to many other animals, including humans, since the cells are present in almost all vertebrates and the brain circuits that regulate the basic forms of social behavior are strikingly similar," he said.

Goodson worked with birds because, with more than 9,200 species and "a dazzling array of social structures," they offer opportunities to study groups of species that differ only in one aspect of social behavior, making it possible to attribute that dimension – in this case, sociality – to differences in a particular brain function.

Traveling as far as South Africa to collect the appropriate birds, Goodson focused on five species of closely related waxbills and finches: the melba finch, the violet-eared waxbill, the Angolan blue waxbill, the spice finch and the zebra finch. All the birds live in similar habitats, are monogamous pair bonders, exhibit biparental care and breed depending on rainfall, but where the melba finch and the violet-eared waxbill are territorial and live in male-female pairs, the spice and zebra finch establish colonies of about 100. The Angolan blue waxbill is an intermediate species, whose groups range from 8 to 40.

Goodson and lab assistant Yiwei Wang stained and examined the birds' brain tissue for a protein known as "Fos" (a cellular marker of brain activity commonly used in neuroscience) specifically within neurons that produce vasotocin. Vasotocin and its equivalent in mammals, vasopressin, are neurochemicals that are known to be involved in a variety of social behaviors, from social recognition to monogamous pair-bonding.

After the birds had viewed a same-sex member of their own species through a wire barrier, the researchers found that activity within one group of vasotocin neurons, in the medial extended amygdala, had increased significantly in the gregarious species. In the asocial species, however, it had decreased.

Goodson and Wang wondered if the results of the same-sex exposure pointed to a specialization of the vasotocin neurons – such that their activity increases in response to positive social situations that normally promote affiliation in a given species rather than those that provoke avoidance or attack. To test the idea, they conducted two additional experiments.

In the first, territorial violet-eared waxbills were exposed to their pair bond partner. As predicted, and in contrast to the response seen after exposure to a bird of the same sex (a negative situation for a territorial, asocial species), the activity of vasotocin neurons increased dramatically in response to this positive scenario.

In the second experiment, highly social zebra finches were placed in a mate-competition situation. Subjects were either allowed to court or were prevented from doing so by a bully. Activity in the vasotocin neurons went up after the positive experience but not after the negative experience of being bullied, supporting the idea that the cells are selectively sensitive.

"In sum," Goodson said, "these vasotocin neurons increase their activity in response to positive social stimuli, and the neurons appear to have evolved in relation to sociality, so that the gregarious species have more vasotocin neurons with higher baseline levels of activity than do the asocial species."

Vasotocin neurons may account for "personality" differences between individuals as well. In related work that has yet to be published, Goodson said, he has observed differences in the number and activity of the neurons in zebra finches that are either duds or studs when it comes to courtship behavior.

Goodson also suspects that the neurons play an analogous role in human social behavior – though we are long way from being able to apply the findings and turn a misanthrope into a party animal.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Goodson finch neurons species vasotocin waxbill

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>