Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groups and grumps: Study identifies 'sociality' neurons

25.10.2006
A University of California, San Diego study has for the first time identified brain cells that influence whether birds of a feather will, or will not, flock together.

Led by James Goodson, associate professor of psychology and neuroscience, and detailed in this week's early online edition of the Proceedings of the National Academy of Sciences, the research demonstrates that vasotocin neurons in the medial extended amygdala respond differently to social cues in birds that live in colonies compared to their more solitary cousins.

Vasotocin neurons appear, according to the study, to selectively promote positive affiliation. The gregarious species also have greater numbers of the neurons and their baseline activity is about twice as high, putting the birds in a kind of perpetual "social mood."

"These findings," Goodson said, "address the fundamental question of sociality: Why are some animal species highly social while others seem to have little or no tolerance for others?

... more about:
»Goodson »finch »neurons »species »vasotocin »waxbill

"And while the observations were made in birds, they should apply to many other animals, including humans, since the cells are present in almost all vertebrates and the brain circuits that regulate the basic forms of social behavior are strikingly similar," he said.

Goodson worked with birds because, with more than 9,200 species and "a dazzling array of social structures," they offer opportunities to study groups of species that differ only in one aspect of social behavior, making it possible to attribute that dimension – in this case, sociality – to differences in a particular brain function.

Traveling as far as South Africa to collect the appropriate birds, Goodson focused on five species of closely related waxbills and finches: the melba finch, the violet-eared waxbill, the Angolan blue waxbill, the spice finch and the zebra finch. All the birds live in similar habitats, are monogamous pair bonders, exhibit biparental care and breed depending on rainfall, but where the melba finch and the violet-eared waxbill are territorial and live in male-female pairs, the spice and zebra finch establish colonies of about 100. The Angolan blue waxbill is an intermediate species, whose groups range from 8 to 40.

Goodson and lab assistant Yiwei Wang stained and examined the birds' brain tissue for a protein known as "Fos" (a cellular marker of brain activity commonly used in neuroscience) specifically within neurons that produce vasotocin. Vasotocin and its equivalent in mammals, vasopressin, are neurochemicals that are known to be involved in a variety of social behaviors, from social recognition to monogamous pair-bonding.

After the birds had viewed a same-sex member of their own species through a wire barrier, the researchers found that activity within one group of vasotocin neurons, in the medial extended amygdala, had increased significantly in the gregarious species. In the asocial species, however, it had decreased.

Goodson and Wang wondered if the results of the same-sex exposure pointed to a specialization of the vasotocin neurons – such that their activity increases in response to positive social situations that normally promote affiliation in a given species rather than those that provoke avoidance or attack. To test the idea, they conducted two additional experiments.

In the first, territorial violet-eared waxbills were exposed to their pair bond partner. As predicted, and in contrast to the response seen after exposure to a bird of the same sex (a negative situation for a territorial, asocial species), the activity of vasotocin neurons increased dramatically in response to this positive scenario.

In the second experiment, highly social zebra finches were placed in a mate-competition situation. Subjects were either allowed to court or were prevented from doing so by a bully. Activity in the vasotocin neurons went up after the positive experience but not after the negative experience of being bullied, supporting the idea that the cells are selectively sensitive.

"In sum," Goodson said, "these vasotocin neurons increase their activity in response to positive social stimuli, and the neurons appear to have evolved in relation to sociality, so that the gregarious species have more vasotocin neurons with higher baseline levels of activity than do the asocial species."

Vasotocin neurons may account for "personality" differences between individuals as well. In related work that has yet to be published, Goodson said, he has observed differences in the number and activity of the neurons in zebra finches that are either duds or studs when it comes to courtship behavior.

Goodson also suspects that the neurons play an analogous role in human social behavior – though we are long way from being able to apply the findings and turn a misanthrope into a party animal.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Goodson finch neurons species vasotocin waxbill

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>