Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groups and grumps: Study identifies 'sociality' neurons

25.10.2006
A University of California, San Diego study has for the first time identified brain cells that influence whether birds of a feather will, or will not, flock together.

Led by James Goodson, associate professor of psychology and neuroscience, and detailed in this week's early online edition of the Proceedings of the National Academy of Sciences, the research demonstrates that vasotocin neurons in the medial extended amygdala respond differently to social cues in birds that live in colonies compared to their more solitary cousins.

Vasotocin neurons appear, according to the study, to selectively promote positive affiliation. The gregarious species also have greater numbers of the neurons and their baseline activity is about twice as high, putting the birds in a kind of perpetual "social mood."

"These findings," Goodson said, "address the fundamental question of sociality: Why are some animal species highly social while others seem to have little or no tolerance for others?

... more about:
»Goodson »finch »neurons »species »vasotocin »waxbill

"And while the observations were made in birds, they should apply to many other animals, including humans, since the cells are present in almost all vertebrates and the brain circuits that regulate the basic forms of social behavior are strikingly similar," he said.

Goodson worked with birds because, with more than 9,200 species and "a dazzling array of social structures," they offer opportunities to study groups of species that differ only in one aspect of social behavior, making it possible to attribute that dimension – in this case, sociality – to differences in a particular brain function.

Traveling as far as South Africa to collect the appropriate birds, Goodson focused on five species of closely related waxbills and finches: the melba finch, the violet-eared waxbill, the Angolan blue waxbill, the spice finch and the zebra finch. All the birds live in similar habitats, are monogamous pair bonders, exhibit biparental care and breed depending on rainfall, but where the melba finch and the violet-eared waxbill are territorial and live in male-female pairs, the spice and zebra finch establish colonies of about 100. The Angolan blue waxbill is an intermediate species, whose groups range from 8 to 40.

Goodson and lab assistant Yiwei Wang stained and examined the birds' brain tissue for a protein known as "Fos" (a cellular marker of brain activity commonly used in neuroscience) specifically within neurons that produce vasotocin. Vasotocin and its equivalent in mammals, vasopressin, are neurochemicals that are known to be involved in a variety of social behaviors, from social recognition to monogamous pair-bonding.

After the birds had viewed a same-sex member of their own species through a wire barrier, the researchers found that activity within one group of vasotocin neurons, in the medial extended amygdala, had increased significantly in the gregarious species. In the asocial species, however, it had decreased.

Goodson and Wang wondered if the results of the same-sex exposure pointed to a specialization of the vasotocin neurons – such that their activity increases in response to positive social situations that normally promote affiliation in a given species rather than those that provoke avoidance or attack. To test the idea, they conducted two additional experiments.

In the first, territorial violet-eared waxbills were exposed to their pair bond partner. As predicted, and in contrast to the response seen after exposure to a bird of the same sex (a negative situation for a territorial, asocial species), the activity of vasotocin neurons increased dramatically in response to this positive scenario.

In the second experiment, highly social zebra finches were placed in a mate-competition situation. Subjects were either allowed to court or were prevented from doing so by a bully. Activity in the vasotocin neurons went up after the positive experience but not after the negative experience of being bullied, supporting the idea that the cells are selectively sensitive.

"In sum," Goodson said, "these vasotocin neurons increase their activity in response to positive social stimuli, and the neurons appear to have evolved in relation to sociality, so that the gregarious species have more vasotocin neurons with higher baseline levels of activity than do the asocial species."

Vasotocin neurons may account for "personality" differences between individuals as well. In related work that has yet to be published, Goodson said, he has observed differences in the number and activity of the neurons in zebra finches that are either duds or studs when it comes to courtship behavior.

Goodson also suspects that the neurons play an analogous role in human social behavior – though we are long way from being able to apply the findings and turn a misanthrope into a party animal.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Goodson finch neurons species vasotocin waxbill

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>