Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groups and grumps: Study identifies 'sociality' neurons

25.10.2006
A University of California, San Diego study has for the first time identified brain cells that influence whether birds of a feather will, or will not, flock together.

Led by James Goodson, associate professor of psychology and neuroscience, and detailed in this week's early online edition of the Proceedings of the National Academy of Sciences, the research demonstrates that vasotocin neurons in the medial extended amygdala respond differently to social cues in birds that live in colonies compared to their more solitary cousins.

Vasotocin neurons appear, according to the study, to selectively promote positive affiliation. The gregarious species also have greater numbers of the neurons and their baseline activity is about twice as high, putting the birds in a kind of perpetual "social mood."

"These findings," Goodson said, "address the fundamental question of sociality: Why are some animal species highly social while others seem to have little or no tolerance for others?

... more about:
»Goodson »finch »neurons »species »vasotocin »waxbill

"And while the observations were made in birds, they should apply to many other animals, including humans, since the cells are present in almost all vertebrates and the brain circuits that regulate the basic forms of social behavior are strikingly similar," he said.

Goodson worked with birds because, with more than 9,200 species and "a dazzling array of social structures," they offer opportunities to study groups of species that differ only in one aspect of social behavior, making it possible to attribute that dimension – in this case, sociality – to differences in a particular brain function.

Traveling as far as South Africa to collect the appropriate birds, Goodson focused on five species of closely related waxbills and finches: the melba finch, the violet-eared waxbill, the Angolan blue waxbill, the spice finch and the zebra finch. All the birds live in similar habitats, are monogamous pair bonders, exhibit biparental care and breed depending on rainfall, but where the melba finch and the violet-eared waxbill are territorial and live in male-female pairs, the spice and zebra finch establish colonies of about 100. The Angolan blue waxbill is an intermediate species, whose groups range from 8 to 40.

Goodson and lab assistant Yiwei Wang stained and examined the birds' brain tissue for a protein known as "Fos" (a cellular marker of brain activity commonly used in neuroscience) specifically within neurons that produce vasotocin. Vasotocin and its equivalent in mammals, vasopressin, are neurochemicals that are known to be involved in a variety of social behaviors, from social recognition to monogamous pair-bonding.

After the birds had viewed a same-sex member of their own species through a wire barrier, the researchers found that activity within one group of vasotocin neurons, in the medial extended amygdala, had increased significantly in the gregarious species. In the asocial species, however, it had decreased.

Goodson and Wang wondered if the results of the same-sex exposure pointed to a specialization of the vasotocin neurons – such that their activity increases in response to positive social situations that normally promote affiliation in a given species rather than those that provoke avoidance or attack. To test the idea, they conducted two additional experiments.

In the first, territorial violet-eared waxbills were exposed to their pair bond partner. As predicted, and in contrast to the response seen after exposure to a bird of the same sex (a negative situation for a territorial, asocial species), the activity of vasotocin neurons increased dramatically in response to this positive scenario.

In the second experiment, highly social zebra finches were placed in a mate-competition situation. Subjects were either allowed to court or were prevented from doing so by a bully. Activity in the vasotocin neurons went up after the positive experience but not after the negative experience of being bullied, supporting the idea that the cells are selectively sensitive.

"In sum," Goodson said, "these vasotocin neurons increase their activity in response to positive social stimuli, and the neurons appear to have evolved in relation to sociality, so that the gregarious species have more vasotocin neurons with higher baseline levels of activity than do the asocial species."

Vasotocin neurons may account for "personality" differences between individuals as well. In related work that has yet to be published, Goodson said, he has observed differences in the number and activity of the neurons in zebra finches that are either duds or studs when it comes to courtship behavior.

Goodson also suspects that the neurons play an analogous role in human social behavior – though we are long way from being able to apply the findings and turn a misanthrope into a party animal.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Goodson finch neurons species vasotocin waxbill

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>