Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule discovered to be key to pain sensitivity

24.10.2006
Gene variation identifies those with higher pain threshold, lower risk of chronic pain

Sensitivity to pain and the risk of developing chronic pain appear to be influenced by levels of a molecule known to be required for the production of major neurotransmitters. In the November issue of Nature Medicine, an international research team based at Massachusetts General Hospital (MGH) describes this unexpected role for the molecule called BH4 and their findings that a particular set of variations in a human gene involved in synthesizing the molecule appears to reduce pain sensitivity.

"This is the first evidence of a genetic contribution to the risk of developing neuropathic pain in humans. The pain-protective gene sequence, which is carried by about 20 to 25 percent of the population, appears to be a marker both for less pain sensitivity and a reduced risk for chronic pain," says senior author Clifford Woolf, MD, PhD, director of the Neural Plasticity Research Group in the MGH Department of Anesthesia and Critical Care. "Identifying those at greater risk of developing chronic pain in response to medical procedures, trauma or diseases could lead to new preventive strategies and potential treatments."

Previous studies in animals have shown that specific strains or related groups of rodents have significant differences in their risk of developing either neuropathic pain, which results from nerve damage, or inflammatory pain, associated with the immune system's response to injuries or conditions like arthritis. But except for some rare inherited conditions, there has been no evidence that genetics contributed to the risk of neuropathic pain in humans.

The research team had previously used gene chips to find that nerve damage in rats altered the regulation of several hundred genes in associated nerve cells. They began the current study by searching through these genes to find any associated with common metabolic pathways and found that three genes that increased expression in response to nerve damage encoded enzymes involved in the production and recycling of BH4, which is essential for the production of serotonin, dopamine, norepinephrine and nitric oxide. Tests in rat models found that the BH4-synthesizing enzymes were activated in injured sensory neurons and that substances known to inhibit those enzymes reduced pain, acting as analgesics. Directly injecting BH4 or a similar molecule increased the animal's response to several painful stimuli.

As a result of the animal studies, the researchers hypothesized that particular variations of human genes involved in the regulation of BH4 might be associated with different responses to pain. Searching for alterations in the gene for GCH1, the human version of the key BH4-controlling enzyme, they genotyped tissues from 168 patients who had participated in an earlier study of spinal disk surgery. One specific GCH1 haplotype - a set of variations in the gene that are inherited together - was more common in study participants who reported less neuropathic pain in the year after their surgery.

To see if that haplotype had a similar association with other types of pain, the researchers studied almost 400 healthy volunteers, who participated in tests of their response to various slightly painful experimental stimuli. Again, those participants with the protective GCH1 haplotype - which the investigators showed reduces the production of BH4 - also reported less pain, and volunteers with two copies of the protective sequence were even less sensitive to pain.

"Our results tell us that BH4 is a key pain-producing molecule – when it goes up, patients experience pain, and if it is not elevated, they will have less pain," says Woolf. "The data also suggest that individuals who say they feel less pain are not just stoics but genuinely have inherited a molecular machinery that reduces their perception of pain. This difference results not from personality or culture, but real differences in the biology of the sensory nervous system.

"Now we need to identify what regulates the switching on of BH4-controlling enzymes after nerve injury and how BH4 alters the excitability of pain fibers. We also would like to see whether those with the protective haplotype might participate more frequently in potentially painful activities – such as extreme sports – or if they have reduced levels of pain in arthritis and other common conditions," he adds. Woolf is the Richard Kitz Professor of Anaesthesia Research at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

Further reports about: BH4 Chronic Variation developing haplotype neuropathic pain sensitivity

More articles from Life Sciences:

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

nachricht New discovery: Common jellyfish is actually two species
22.11.2017 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>