Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecule discovered to be key to pain sensitivity

Gene variation identifies those with higher pain threshold, lower risk of chronic pain

Sensitivity to pain and the risk of developing chronic pain appear to be influenced by levels of a molecule known to be required for the production of major neurotransmitters. In the November issue of Nature Medicine, an international research team based at Massachusetts General Hospital (MGH) describes this unexpected role for the molecule called BH4 and their findings that a particular set of variations in a human gene involved in synthesizing the molecule appears to reduce pain sensitivity.

"This is the first evidence of a genetic contribution to the risk of developing neuropathic pain in humans. The pain-protective gene sequence, which is carried by about 20 to 25 percent of the population, appears to be a marker both for less pain sensitivity and a reduced risk for chronic pain," says senior author Clifford Woolf, MD, PhD, director of the Neural Plasticity Research Group in the MGH Department of Anesthesia and Critical Care. "Identifying those at greater risk of developing chronic pain in response to medical procedures, trauma or diseases could lead to new preventive strategies and potential treatments."

Previous studies in animals have shown that specific strains or related groups of rodents have significant differences in their risk of developing either neuropathic pain, which results from nerve damage, or inflammatory pain, associated with the immune system's response to injuries or conditions like arthritis. But except for some rare inherited conditions, there has been no evidence that genetics contributed to the risk of neuropathic pain in humans.

The research team had previously used gene chips to find that nerve damage in rats altered the regulation of several hundred genes in associated nerve cells. They began the current study by searching through these genes to find any associated with common metabolic pathways and found that three genes that increased expression in response to nerve damage encoded enzymes involved in the production and recycling of BH4, which is essential for the production of serotonin, dopamine, norepinephrine and nitric oxide. Tests in rat models found that the BH4-synthesizing enzymes were activated in injured sensory neurons and that substances known to inhibit those enzymes reduced pain, acting as analgesics. Directly injecting BH4 or a similar molecule increased the animal's response to several painful stimuli.

As a result of the animal studies, the researchers hypothesized that particular variations of human genes involved in the regulation of BH4 might be associated with different responses to pain. Searching for alterations in the gene for GCH1, the human version of the key BH4-controlling enzyme, they genotyped tissues from 168 patients who had participated in an earlier study of spinal disk surgery. One specific GCH1 haplotype - a set of variations in the gene that are inherited together - was more common in study participants who reported less neuropathic pain in the year after their surgery.

To see if that haplotype had a similar association with other types of pain, the researchers studied almost 400 healthy volunteers, who participated in tests of their response to various slightly painful experimental stimuli. Again, those participants with the protective GCH1 haplotype - which the investigators showed reduces the production of BH4 - also reported less pain, and volunteers with two copies of the protective sequence were even less sensitive to pain.

"Our results tell us that BH4 is a key pain-producing molecule – when it goes up, patients experience pain, and if it is not elevated, they will have less pain," says Woolf. "The data also suggest that individuals who say they feel less pain are not just stoics but genuinely have inherited a molecular machinery that reduces their perception of pain. This difference results not from personality or culture, but real differences in the biology of the sensory nervous system.

"Now we need to identify what regulates the switching on of BH4-controlling enzymes after nerve injury and how BH4 alters the excitability of pain fibers. We also would like to see whether those with the protective haplotype might participate more frequently in potentially painful activities – such as extreme sports – or if they have reduced levels of pain in arthritis and other common conditions," he adds. Woolf is the Richard Kitz Professor of Anaesthesia Research at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:

Further reports about: BH4 Chronic Variation developing haplotype neuropathic pain sensitivity

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>