Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery about evolution of fungi has implications for humans

24.10.2006
As early fungi made the evolutionary journey from water to land and branched off from animals, they shed tail-like flagella that propelled them through their aquatic environment and evolved a variety of new mechanisms (including explosive volleys and fragrances) to disperse their spores and reproduce in a terrestrial setting.

"What's particularly interesting is that species retained their flagella for different lengths of time and developed different mechanisms of spore dispersal," said David McLaughlin, professor of plant biology at the University of Minnesota in the College of Biological Sciences and co-author of a paper published in the Oct. 19 issue of Nature describing how fungi adapted to life on land.

The discovery is the latest installment in an international effort to learn the origins of species. McLaughlin is one of five principal investigators leading a team of 70 researchers at 35 institutions. The group analyzed information from six key genetic regions in almost 200 contemporary species to reconstruct the earliest days of fungi and their various relations.

McLaughlin is directing the assembly of a shared database of fungal structures obtained through electron microscopy, which produces detailed images that provide clues to the diversity of these organisms. The work is funded by a $2.65 million "Assembling the Tree of Life" grant from the National Science Foundation that was awarded to Duke University, the University of Minnesota, Oregon State University and Clark University in January 2003.

... more about:
»McLaughlin »Organisms »animals »fungi »species

The discovery provides a new glimpse into evolution of life on Earth. It will also help scientists better understand this unusual group of organisms and learn how to develop uses for their unique properties in medicine, agriculture, conservation and industry.

McLaughlin believes fungi are a valuable untapped natural resource. They play a variety of roles in nature, such as supplying plants with nutrients through mutualistic relationships and recycling dead organisms. He estimates that there are about 1.5 million species on the Earth, but only about 10 percent of those are known. And civilization has only identified uses for a few of those, such as using yeast to make bread, beer, wine, cheese and a few antibiotics.

"Understanding the relationships among fungi has many potential benefits for humans," McLaughlin said. "It provides tools to identify unknown species that may lead to new products for medicine and industry. It also helps us to manage natural areas, such as Minnesota's oak savannahs, where the fungi play important roles but are often hidden from view."

Fungi are also intriguing because their cells are surprisingly similar to human cells, McLaughlin said. In 1998 scientists discovered that fungi split from animals about 1.538 billion years ago, whereas plants split from animals about 1.547 billion years ago. This means fungi split from animals 9 million years after plants did, in which case fungi are actually more closely related to animals than to plants. The fact that fungi had motile cells propelled by flagella that are more like those in animals than those in plants, supports that.

Not all fungi are beneficial to humans. A small percent have been linked to human diseases, including life-threatening conditions. Treating these can be risky because human and fungal cells are similar. Any medicine that kills the fungus can also harm the patient. Thus knowing more about fungi helps identify new and better ways to treat serious fungal infections in humans. Fungi are also the major cause of disease in agricultural crops, so understanding them also helps track and control these plant diseases.

McLaughlin and his colleagues will continue their efforts to establish genetic relationships among fungi and to understand their roles in nature. Additional structural studies, especially of key species, are needed to determine how the organisms adapted.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: McLaughlin Organisms animals fungi species

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>