Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery about evolution of fungi has implications for humans

24.10.2006
As early fungi made the evolutionary journey from water to land and branched off from animals, they shed tail-like flagella that propelled them through their aquatic environment and evolved a variety of new mechanisms (including explosive volleys and fragrances) to disperse their spores and reproduce in a terrestrial setting.

"What's particularly interesting is that species retained their flagella for different lengths of time and developed different mechanisms of spore dispersal," said David McLaughlin, professor of plant biology at the University of Minnesota in the College of Biological Sciences and co-author of a paper published in the Oct. 19 issue of Nature describing how fungi adapted to life on land.

The discovery is the latest installment in an international effort to learn the origins of species. McLaughlin is one of five principal investigators leading a team of 70 researchers at 35 institutions. The group analyzed information from six key genetic regions in almost 200 contemporary species to reconstruct the earliest days of fungi and their various relations.

McLaughlin is directing the assembly of a shared database of fungal structures obtained through electron microscopy, which produces detailed images that provide clues to the diversity of these organisms. The work is funded by a $2.65 million "Assembling the Tree of Life" grant from the National Science Foundation that was awarded to Duke University, the University of Minnesota, Oregon State University and Clark University in January 2003.

... more about:
»McLaughlin »Organisms »animals »fungi »species

The discovery provides a new glimpse into evolution of life on Earth. It will also help scientists better understand this unusual group of organisms and learn how to develop uses for their unique properties in medicine, agriculture, conservation and industry.

McLaughlin believes fungi are a valuable untapped natural resource. They play a variety of roles in nature, such as supplying plants with nutrients through mutualistic relationships and recycling dead organisms. He estimates that there are about 1.5 million species on the Earth, but only about 10 percent of those are known. And civilization has only identified uses for a few of those, such as using yeast to make bread, beer, wine, cheese and a few antibiotics.

"Understanding the relationships among fungi has many potential benefits for humans," McLaughlin said. "It provides tools to identify unknown species that may lead to new products for medicine and industry. It also helps us to manage natural areas, such as Minnesota's oak savannahs, where the fungi play important roles but are often hidden from view."

Fungi are also intriguing because their cells are surprisingly similar to human cells, McLaughlin said. In 1998 scientists discovered that fungi split from animals about 1.538 billion years ago, whereas plants split from animals about 1.547 billion years ago. This means fungi split from animals 9 million years after plants did, in which case fungi are actually more closely related to animals than to plants. The fact that fungi had motile cells propelled by flagella that are more like those in animals than those in plants, supports that.

Not all fungi are beneficial to humans. A small percent have been linked to human diseases, including life-threatening conditions. Treating these can be risky because human and fungal cells are similar. Any medicine that kills the fungus can also harm the patient. Thus knowing more about fungi helps identify new and better ways to treat serious fungal infections in humans. Fungi are also the major cause of disease in agricultural crops, so understanding them also helps track and control these plant diseases.

McLaughlin and his colleagues will continue their efforts to establish genetic relationships among fungi and to understand their roles in nature. Additional structural studies, especially of key species, are needed to determine how the organisms adapted.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: McLaughlin Organisms animals fungi species

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>