Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT reveals inner lives of red blood cells

Work could aid research on sickle cell anemia and malaria

For the first time, researchers at MIT can see every vibration of a cell membrane, using a technique that could one day allow scientists to create three-dimensional images of the inner workings of living cells.

Studying cell membrane dynamics can help scientists gain insight into diseases such as sickle cell anemia, malaria and cancer. Using a technique known as quantitative phase imaging, researchers at MIT's George R. Harrison Spectroscopy Laboratory can see cell membrane vibrations as tiny as a few tens of nanometers (billionths of a meter).

But cell membrane dynamics are just the beginning.

Soon, the researchers hope to extend their view beyond the cell membrane into the cell, to create images of what is happening inside living cells -- including how cells communicate with each other and what causes them to become cancerous.

"One of our goals is create 3D tomographic images of the internal structure of a cell," said Michael Feld, MIT professor of physics and director of the Spectroscopy Lab. "The beauty is that with this technique, you can study dynamical processes in living cells in real time."

Scientists have long been able to peer into cells using electron microscopy, which offers a much higher magnification than a traditional light microscope. However, electron microscopy can only be used on cells that are dehydrated, frozen or treated in other ways. Thus it cannot be used to view living cells.

Quantitative phase imaging, on the other hand, allows researchers to observe living cells for as long a time period as they want. After years of fine tuning, the MIT researchers can now create images with a resolution of 0.2 nanometers. (A red blood cell has a diameter of about 8 microns, or 8,000 nanometers.)

So far, the team has focused its attention primarily on red blood cells and neurons. Red blood cells are an especially good model to study cell membrane dynamics because they are relatively simple cells, with no nuclei or internal cell structures, says Gabriel Popescu, a postdoctoral associate in the Spectroscopy Lab.

In work that is soon to be published in Physical Review Letters, the MIT researchers show that the frequency of cell membrane vibration is related to the elasticity of the cell membrane. Elasticity is important for red blood cells because they have to be able to squeeze through tiny capillaries in the brain and elsewhere, as they deliver oxygen.

"The elasticity of these cells is crucial for their function," said Popescu.

It has been known for more than a century that red blood cell membranes are continuously undulating, or as Popescu puts it, a red blood cell is "effectively a drum in perpetual vibration." This undulation offers a chance to study the mechanical properties of the membrane, including how the membrane provides the cell with both the softness and the elasticity needed to squeeze through narrow capillaries.

Red blood cell abnormalities, such as the twisting deformation seen in sickle cell anemia, also influence membrane dynamics. The researchers are now studying how sickle cell anemia and malaria infection affect the mechanical properties of red blood cell membranes.

Popescu gave a talk on the blood cell work earlier this month at a meeting of the Optical Society of America.

Another group in the Spectroscopy Lab is studying signal propagation in neurons. This project, a collaboration with Sebastian Seung, a professor of brain and cognitive sciences, and led by Chris Fang-Yen, a postdoctoral associate in the Spectroscopy Laboratory, is based on the fact that membranes undergo tiny mechanical deformations when an action potential (electrical current) travels along the neuron's axon.

The correlation between membrane vibration and electrical activity could "give us insight on how networks are organized on a neuron level," said Fang-Yen. They are especially interested in studying neural networks in the hippocampus, a brain area associated with memory.

Quantitative phase imaging builds on an optical phenomenon known as interferometry. With this method, a light wave passing through the cell is compared with a reference wave that doesn't pass through the sample. Combining those two waves creates an interference pattern that offers nanometer-scale images of individual cells.

The major problem with interferometry is that the apparatus is highly sensitive. Even breathing near the interferometer can disrupt the system, leading Popescu to observe that in a typical laboratory environment, trying to measure such tiny optical signals is "like trying to sense the waves of a jellyfish in a stormy ocean."

One way to overcome that is to mount the system in an isolated environment. Another technique, known as the "common path" approach, places both arms of the interferometer (through which the light waves are traveling) in close proximity so the noise in the signals cancel each other out.

Quantitative phase imaging has not yet reached the level of resolution that electron microscopy offers, but Feld said he believes it will someday.

Other Spectroscopy Laboratory researchers involved in the work are Wonshik Choi, a postdoctoral associate; Ramachandra Dasari, principal research scientist; Kamran Badizadegan, a faculty member in the MIT-Harvard Division of Health Sciences and Technology; Shahrooz Amin, a graduate student in electrical engineering and computer science; Seungeun Oh, a graduate student in physics; YongKeun Park, a graduate student in mechanical engineering; and Niyom Lue, a graduate student at the University of Massachusetts College of Engineering.

Michael Laposata and Catherine Best Popescu from Massachusetts General Hospital are also collaborating on the red blood cell studies.

This work was funded by the National Institutes of Health and Hamamatsu Photonics.

Elizabeth A. Thomson | MIT News Office
Further information:

Further reports about: Dynamics Neuron Popescu Researchers anemia mechanical spectroscopy

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>