Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prove that parts of cell nuclei are not arranged at random

23.10.2006
The nucleus of a mammal cell is made up of component parts arranged in a pattern which can be predicted statistically, says new research published today.

Scientists hope this discovery that parts of the inside of a cell nucleus are not arranged at random will give greater insight into how cells work and could eventually lead to a greater understanding of how they become dysfunctional in diseases like cancer.

The study, published today in PLoS Computational Biology, involved systems biologists working together with mathematicians to identify, for the first time, 'spatial relationships' governing the distribution of an important control protein in the nucleus, in relation to other components within the nuclei of mammal cells.

This widespread protein called CBP acts on certain genes within the cell nucleus, turning them on to make specific proteins at different times throughout the life of the cell. The research began with a team of biologists in Canada labelling components inside cell nuclei with fluorescent dyes, which enabled them to identify concentrated pockets of CBP. However the pattern seen under the microscope is very complex. When the 'nearest neighbours' of the CPB pockets, such as gene regions and other protein machinery are visualised, the spatial relationships become too difficult to define.

... more about:
»CBP »Component »Nucleus »nuclei »regions

To overcome this, the mathematicians involved in the research analysed the nearest neighbour distance measurements between the nuclei's components, and developed a toolkit for showing where other proteins and gene regions are likely to be located in relation to CBP across the nucleus. Specifically, they were able to develop a model for showing which components were more likely to be located closest to a CBP pocket, and those that were less likely. This effectively created a probability map of the nucleus, with components' locations derived relative to the location of concentrations of CBP.

Professor Paul Freemont from Imperial College London's Division of Molecular Biosciences one of the leaders of the research said: "We chose to focus on CBP because it is a well established gene regulator that activates genes by altering their local structure to allow the production of the specific proteins encoded by the genes. By using fluorescent dyes and sophisticated imaging techniques, we discovered that CBP pockets are more likely to be located closest to gene regions with which it is known to modify. This research is very important as it advances our understanding of how the cell nucleus is organised, although it leaves us with a 'chicken-or-egg' question to answer: is CBP located close to certain gene regions because they are active or does the location of CBP result in the activation of these genes?"

By developing these quantitative approaches and applying them more broadly, biologists will in the future be able to have complete spatial models for cells that not only define where things are but also the likelihood of them being in a particular location at a particular time. This will allow a deeper understanding of how cells are organised and will be of particular importance in understanding and predicting cells whose structure becomes altered as a first sign of disease such as cancer.

Professor Freemont added: "This research is groundbreaking in the field of systems biology because we're working with mathematicians to provide a solid statistical framework to explain aspects of how the cell nucleus is organised."

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

Further reports about: CBP Component Nucleus nuclei regions

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>