Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists prove that parts of cell nuclei are not arranged at random

The nucleus of a mammal cell is made up of component parts arranged in a pattern which can be predicted statistically, says new research published today.

Scientists hope this discovery that parts of the inside of a cell nucleus are not arranged at random will give greater insight into how cells work and could eventually lead to a greater understanding of how they become dysfunctional in diseases like cancer.

The study, published today in PLoS Computational Biology, involved systems biologists working together with mathematicians to identify, for the first time, 'spatial relationships' governing the distribution of an important control protein in the nucleus, in relation to other components within the nuclei of mammal cells.

This widespread protein called CBP acts on certain genes within the cell nucleus, turning them on to make specific proteins at different times throughout the life of the cell. The research began with a team of biologists in Canada labelling components inside cell nuclei with fluorescent dyes, which enabled them to identify concentrated pockets of CBP. However the pattern seen under the microscope is very complex. When the 'nearest neighbours' of the CPB pockets, such as gene regions and other protein machinery are visualised, the spatial relationships become too difficult to define.

... more about:
»CBP »Component »Nucleus »nuclei »regions

To overcome this, the mathematicians involved in the research analysed the nearest neighbour distance measurements between the nuclei's components, and developed a toolkit for showing where other proteins and gene regions are likely to be located in relation to CBP across the nucleus. Specifically, they were able to develop a model for showing which components were more likely to be located closest to a CBP pocket, and those that were less likely. This effectively created a probability map of the nucleus, with components' locations derived relative to the location of concentrations of CBP.

Professor Paul Freemont from Imperial College London's Division of Molecular Biosciences one of the leaders of the research said: "We chose to focus on CBP because it is a well established gene regulator that activates genes by altering their local structure to allow the production of the specific proteins encoded by the genes. By using fluorescent dyes and sophisticated imaging techniques, we discovered that CBP pockets are more likely to be located closest to gene regions with which it is known to modify. This research is very important as it advances our understanding of how the cell nucleus is organised, although it leaves us with a 'chicken-or-egg' question to answer: is CBP located close to certain gene regions because they are active or does the location of CBP result in the activation of these genes?"

By developing these quantitative approaches and applying them more broadly, biologists will in the future be able to have complete spatial models for cells that not only define where things are but also the likelihood of them being in a particular location at a particular time. This will allow a deeper understanding of how cells are organised and will be of particular importance in understanding and predicting cells whose structure becomes altered as a first sign of disease such as cancer.

Professor Freemont added: "This research is groundbreaking in the field of systems biology because we're working with mathematicians to provide a solid statistical framework to explain aspects of how the cell nucleus is organised."

Danielle Reeves | EurekAlert!
Further information:

Further reports about: CBP Component Nucleus nuclei regions

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>