Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prove that parts of cell nuclei are not arranged at random

23.10.2006
The nucleus of a mammal cell is made up of component parts arranged in a pattern which can be predicted statistically, says new research published today.

Scientists hope this discovery that parts of the inside of a cell nucleus are not arranged at random will give greater insight into how cells work and could eventually lead to a greater understanding of how they become dysfunctional in diseases like cancer.

The study, published today in PLoS Computational Biology, involved systems biologists working together with mathematicians to identify, for the first time, 'spatial relationships' governing the distribution of an important control protein in the nucleus, in relation to other components within the nuclei of mammal cells.

This widespread protein called CBP acts on certain genes within the cell nucleus, turning them on to make specific proteins at different times throughout the life of the cell. The research began with a team of biologists in Canada labelling components inside cell nuclei with fluorescent dyes, which enabled them to identify concentrated pockets of CBP. However the pattern seen under the microscope is very complex. When the 'nearest neighbours' of the CPB pockets, such as gene regions and other protein machinery are visualised, the spatial relationships become too difficult to define.

... more about:
»CBP »Component »Nucleus »nuclei »regions

To overcome this, the mathematicians involved in the research analysed the nearest neighbour distance measurements between the nuclei's components, and developed a toolkit for showing where other proteins and gene regions are likely to be located in relation to CBP across the nucleus. Specifically, they were able to develop a model for showing which components were more likely to be located closest to a CBP pocket, and those that were less likely. This effectively created a probability map of the nucleus, with components' locations derived relative to the location of concentrations of CBP.

Professor Paul Freemont from Imperial College London's Division of Molecular Biosciences one of the leaders of the research said: "We chose to focus on CBP because it is a well established gene regulator that activates genes by altering their local structure to allow the production of the specific proteins encoded by the genes. By using fluorescent dyes and sophisticated imaging techniques, we discovered that CBP pockets are more likely to be located closest to gene regions with which it is known to modify. This research is very important as it advances our understanding of how the cell nucleus is organised, although it leaves us with a 'chicken-or-egg' question to answer: is CBP located close to certain gene regions because they are active or does the location of CBP result in the activation of these genes?"

By developing these quantitative approaches and applying them more broadly, biologists will in the future be able to have complete spatial models for cells that not only define where things are but also the likelihood of them being in a particular location at a particular time. This will allow a deeper understanding of how cells are organised and will be of particular importance in understanding and predicting cells whose structure becomes altered as a first sign of disease such as cancer.

Professor Freemont added: "This research is groundbreaking in the field of systems biology because we're working with mathematicians to provide a solid statistical framework to explain aspects of how the cell nucleus is organised."

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

Further reports about: CBP Component Nucleus nuclei regions

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>