Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene linked to macular degeneration risk

23.10.2006
May provide key to treatment, prevention

Researchers at the John A. Moran Eye Center at the University of Utah have identified a gene called HTRA1 that contributes to a major risk of Age Related Macular Degeneration (AMD), the most common cause of irreversible vision loss in the developed world. The discovery of this gene allows anyone to take a simple blood test to find out if they are up to 700% more likely to develop AMD than the average person. This is particularly important for individuals who have a family history of blinding eye conditions.

This test, which is strongly predictive of AMD, will allow people with high risk for AMD to adapt diet and lifestyle changes to lower their risk or delay the onset of the disease. Perhaps more significantly, because this research has identified an entire new pathway and drug target for AMD, this discovery will very likely lead to new and effective treatments for the disease.

Lead by Kang Zhang M.D., Ph.D., Director of the Division of Ophthalmic Genetics at the Moran Eye Center and Associate Professor of Ophthalmology and Visual Sciences at the University of Utah, the study will be published online October 19 in the journal Science. Dr. Zhang explains the significance of the discovery: "Several previous studies have implicated a major gene at chromosome 10q26 that affects the risk of AMD, but until this study the precise gene has not been identified."

... more about:
»AMD »Degeneration »Macular

AMD is a degenerative disorder affecting a portion of the retina called the macula. The macula is responsible for clear, central vision. Individuals with AMD have difficulty with activities like reading, watching television, and seeing faces of people directly across the table. The disease often leads to legal blindness in patients older than 60 years of age.

How did the researchers discover that this gene is involved in AMD? In this study the researchers genotyped 581 people with AMD and 309 without AMD in a Utah population. Their studies demonstrate that if a person has a mutant copy of the HTRA1 gene, they have a significantly increased risk of developing age related macular degeneration during their lifetime.

"If anyone in your family has a history of macular degeneration, this test would be advised," says Dr. Zhang. "The addition of this new piece to the AMD puzzle suggests that this gene plays a critical role in the formation of tiny protein and fat-containing debris called soft confluent drusen, a precursor of AMD, and promotes abnormal growth of blood vessels typical of the wet form of AMD. The gene is also a critical genetic clue that will allow us to move forward with developing treatments and preventive strategies for patients with AMD. With our massive population swing toward the at-risk age (60+) for AMD, finding treatments and cures is vital."

Steve Brown | EurekAlert!
Further information:
http://www.utah.edu

Further reports about: AMD Degeneration Macular

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>