Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research could lead to major breakthrough in the cost of effective new cancer drug

Scientists at the University of Sunderland have joined forces with a US university in a new project that aims to make a miracle cancer drug affordable.

The university is jointly funding the research of PhD student Giso Abadi from Valdosta State University in Georgia, who is working with Sunderland scientists Dr Lyn Noble and Professor Paul Groundwater on the anti-cancer agent bryostatin.

In clinical trials bryostatin has already proven extremely effective in fighting many cancers, and has recently been proven effective in the treatment of Alzheimers disease. The drug is present in the marine invertebrate bugula neritina, and in the surrounding sediment in areas of the Gulf of Mexico.

However, it takes 14 tons of dry weight bugula from the ocean to extract only one ounce of purified bryostatin.

... more about:
»Cancer »bryostatin »bugula

“Mass production just isn’t viable on economic or environmental grounds using this method,” says Dr Noble, Giso’s director of studies at Sunderland.

“Usually when potential drugs which occur naturally are discovered chemists can synthesise them in the lab, and this is possible with bryostatin, but it takes 65 reaction steps. Pharmaceutical companies will only normally consider synthesising a medicinal product that uses a process of between five and ten steps, so this method also has no commercial mileage.

“It costs a kings ransom to buy synthetic bryostatin, £261 per 50 micrograms – that’s £5.2 million per gram!”

A lot of research has been done to find a cost effective way to produce the drug in the USA, including a $7m project to create a ‘sea farm’ where the marine organism could be bred naturally. Unfortunately, the farm was exposed to unpredictable weather conditions and the bugula colony was lost in a hurricane.

Now PhD student Giso is trying a different approach. Bacteria that use the marine animal as a host are thought to be responsible for producing the bryostatin.

Efforts are underway to successfully grow the bacteria in salt water tanks in the lab at Valdosta, by optimising the conditions which mimic the bacteria’s natural environment. If successful it is hoped that Giso’s methods, alongside the expertise of Sunderland chemists, will eventually find an effective and relatively inexpensive method of producing bryostatin in the laboratory.

Chemists at Sunderland were so impressed with Giso’s research that they flew out to Valdosta and convinced officials there to jointly fund her work.

Giso, who is used to the humid heat of America’s Deep South and currently trying to adjust to the North-East weather, is planning to extend her work into investigating if it’s possible to find bugula neritina and harvest it from the North Sea, rather than the Gulf of Mexico.

“Bugula is seasonal in the Gulf of Mexico, a very nondescript brown moss like animal, and it has been found in colder waters of other oceans around the world,” she said. “It’s not known if they are active in the North Sea, but the water’s certainly cold enough.”

Whether or not they do manage to find the elusive creatures in the North Sea, by optimising the growing conditions for the bacteria to thrive and produce in the lab the research team’s eventual aim is to create a ‘production line’ of bryostatin. If they can manage that the drug will be available cheaply for the first time, and will change the lives of literally millions of cancer and Alzheimer sufferers worldwide.

Tony Kerr | alfa
Further information:

Further reports about: Cancer bryostatin bugula

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>