Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain protein improves stroke symptoms even when injected after 3 days

18.10.2006
A protein naturally occurring in the brain improves recovery from stroke when injected up to three days after the onset of the stroke, and could be used as an effective stroke drug.

A study in rats published today in the open access journal BMC Biology shows that an injection of Granulocyte-Colony Stimulating Factor (G-CSF), whose function in the brain is to control the formation of neurons and counteract neurone death, reduces the size of the area affected by a stroke by a third when injected four hours after the onset of the stroke. The study also shows that regular, delayed injections of G-CSF, starting up to three days after experimental stroke, are effective in restoring motor functions in rats.

G-CSF is known to improve recovery after a stroke, and it is currently being tested for use in humans. The BMC Biology study is the first to show that G-CSF can be effective when injected this late after a stroke event.

Armin Schneider from Sygnis Bioscience AG (formerly known as Axaron Bioscience AG) in Heidelberg, Germany, and Wolf-Rüdiger Schäbitz from the Neurology department in Münster, Germany, together with colleagues from the universities of Heidelberg and Erlangen, used rat models of two different types of stroke to assess the effect of an injection of G-CSF on recovery.

... more about:
»G-CSF »IMPROVE »injected

The first model was used to assess the impact of G-CSF on the size of the brain area affected by the stroke, which is identified by the presence of dead neurons. In this model, the animals were injected with a single dose of G-CSF at 60µg/kg body weight four hours after the stroke. The researchers demonstrate that the size of the affected area is reduced by 34.5% in the rats that received G-CSF four hours after the stroke.

The second model was used to assess the effect of G-CSF on the functional performance of the animals. In this model, the rats were injected 10 µg/kg body weight of G-CSF, starting 24 or 72 hours after the stroke, for a period of ten days. Rats treated with G-CSF for ten days after the stroke performed significantly better in an exercise designed to test their physical abilities and coordination than rats that had been treated with placebo.

The results of the current study should help to guide the design of future studies in humans.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

Further reports about: G-CSF IMPROVE injected

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>