Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain protein improves stroke symptoms even when injected after 3 days

18.10.2006
A protein naturally occurring in the brain improves recovery from stroke when injected up to three days after the onset of the stroke, and could be used as an effective stroke drug.

A study in rats published today in the open access journal BMC Biology shows that an injection of Granulocyte-Colony Stimulating Factor (G-CSF), whose function in the brain is to control the formation of neurons and counteract neurone death, reduces the size of the area affected by a stroke by a third when injected four hours after the onset of the stroke. The study also shows that regular, delayed injections of G-CSF, starting up to three days after experimental stroke, are effective in restoring motor functions in rats.

G-CSF is known to improve recovery after a stroke, and it is currently being tested for use in humans. The BMC Biology study is the first to show that G-CSF can be effective when injected this late after a stroke event.

Armin Schneider from Sygnis Bioscience AG (formerly known as Axaron Bioscience AG) in Heidelberg, Germany, and Wolf-Rüdiger Schäbitz from the Neurology department in Münster, Germany, together with colleagues from the universities of Heidelberg and Erlangen, used rat models of two different types of stroke to assess the effect of an injection of G-CSF on recovery.

... more about:
»G-CSF »IMPROVE »injected

The first model was used to assess the impact of G-CSF on the size of the brain area affected by the stroke, which is identified by the presence of dead neurons. In this model, the animals were injected with a single dose of G-CSF at 60µg/kg body weight four hours after the stroke. The researchers demonstrate that the size of the affected area is reduced by 34.5% in the rats that received G-CSF four hours after the stroke.

The second model was used to assess the effect of G-CSF on the functional performance of the animals. In this model, the rats were injected 10 µg/kg body weight of G-CSF, starting 24 or 72 hours after the stroke, for a period of ten days. Rats treated with G-CSF for ten days after the stroke performed significantly better in an exercise designed to test their physical abilities and coordination than rats that had been treated with placebo.

The results of the current study should help to guide the design of future studies in humans.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

Further reports about: G-CSF IMPROVE injected

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>