Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae provide new clues to cancer

16.10.2006
A microscopic green alga helped scientists at the Salk Institute for Biological Studies identify a novel function for the retinoblastoma protein (RB), which is known for its role as a tumor suppressor in mammalian cells. By coupling cell size with cell division, RB ensures that cells stay within an optimal size range.

Their findings, which will be published in the October 13 online edition of PLoS Genetics, show that RB blocks cells from dividing before they reach a minimum size and could provide new insights into the origins of cancer.

"Being the right size is very important for cells because their physiology changes quite dramatically when the surface-to-volume ratio changes," explains senior author James Umen, Ph.D., an assistant professor and Hearst Endowment Chair in Salk's Plant Biology Laboratory. "The human body is composed of trillions of cells, each of which must coordinate its growth and division in order to maintain size equilibrium," he adds.

This process is very tightly regulated and any given cell type will always stay within a very narrow size range, but the means by which cell size is determined remain mysterious. In proliferating cells, control mechanisms termed checkpoints are thought to prevent cells from dividing until they reach a specific size, but the nature of the checkpoints has proved difficult to dissect.

... more about:
»Umen »alga »cell cycle »mechanism »reinhardtii

Understanding how cells balance the opposing processes of growth and division in order to achieve size control is more than just a fascinating intellectual pursuit for cell biologists: loss of size control is a hallmark of cancer cells, which exhibit severe defects in regulating growth and division.

"In mammalian cells it is very hard to separate size control from cell cycle control because it is very easy to mess up cell size as an indirect consequence of manipulating cell cycle rates," says Umen.

The tiny single-celled alga Chlamydomonas reinhardtii provided a model organism to study the link between cell size and growth. In nature, the organism is found in fresh and brackish water and in all kinds of soil. Its close relatives have adapted to the harsh conditions found in underwater thermal vents and even to life under the Antarctic ice shelf. In the lab, C. reinhardtii has been used to investigate agricultural, energy-related and medical questions.

Chlamydomonas is particularly well suited as an organism to dissect the control mechanisms behind cell size not only because of its simplicity but due to its peculiar cell cycle: during a prolonged growth phase cells enlarge to many times their original size and then suddenly divide several times in rapid succession. Despite this rapid-fire response, cell division is tightly controlled by a sizing mechanism that ensures daughter cells are never too large or too small.

In the course of earlier work, Umen identified an RB homolog encoded by the mat3 gene in C. reinhardtii and later discovered algal counterparts of other players in the RB pathway in humans and mice. To analyze their function in Chlamydomonas, the Salk team isolated cells with mutations in individual members of the RB signaling pathway – and things immediately started to go wrong.

Explains Umen, "Cells with mutations in the C. reinhardtii RB homolog start dividing prematurely, and continue dividing excessively, producing abnormally small daughter cells. Mutations in the algal versions of two key targets of the RB tumor suppressor have exactly the opposite effect of RB mutations, resulting in abnormally large cells that don't divide when they should." These findings demonstrate that once cells reach a critical size, they need those two RB target proteins to divide on schedule.

"The interesting thing for us is that the whole genetic module has been conserved from algae to plants to humans," says Umen. "It's been controlling cell division for well over a billion years. As multicellular organisms evolved, the RB pathway was co-opted to integrate growth factor signals, but its original purpose in single cells was more fundamental: to couple cell size to cell cycle progression," he adds.

Recently, evidence has emerged that animal cells also have size checkpoints whose nature is still unknown. "Our results open up the possibility that the ancient size control function for the RB pathway we discovered in Chlamydomonas may still be there in animal cells, but was integrated into a larger network that also responds to extracellular input from growth factors. It will be an interesting challenge now to dissect out that function for RB in animal cells," he says.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Umen alga cell cycle mechanism reinhardtii

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>