Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Reinvent the Science and Industry of Making Plastics

16.10.2006
Chemists at the University of Pennsylvania have created a new process for free radical polymerization, the chemical reaction responsible for creating an enormous array of everyday plastic products, from Styrofoam cups to PVC tubing to car parts.

Unlike the traditional method for living polymerization, which has been around for more than 50 years, this method takes place at room temperature, uses less metal catalyst to drive the reaction and requires a very short reaction time.

We have basically re-written the equation of how the polymerization process can work, which can have a direct impact on the cost of the reaction and the types of materials that we can create. said Virgil Percec, a professor in Penns Department of Chemistry. Polymerization is a billion-dollar-a-year industry, and the applications for the technology are enormous, ranging from medicine to coatings, from moldable forms of rubber to electronics and even complex organic synthesis, all via these radical reactions.

This new technique, called Single Electron Transfer-Living Radical Polymerization, also offers chemists greater control over the molecular architecture of the polymers they create and allows them to use materials that did not work with the traditional process. The mechanism of the synthesis reaction works so well that there is very little worry about undesirable side reactions, and the resulting polymers do not need to be purified to remove the catalyst. Their findings are presented in the Journal of the American Chemical Society, available online now.

The SET-LRP mechanism can allow for a greater control over the three-dimensional structure of the polymers being created, Percec said. The overall process is not only more efficient, it also provides industrial chemists a new creative tool for building consumer and industrial.

Polymerization links individual molecules, referred to as monomers, together to form synthetic products on a larger-scale. In the chemical reaction to create polymers, chemists use catalysts to decrease the amount of energy it takes to create a shared bond between individual atoms of each monomer. The traditional method, referred to as atom-transfer radical polymerization or metal catalyzed living radical polymerization, demands high temperatures and a great amount of the metal catalyst, in part, because the process depends on the energy it takes to transfer inner-sphere electrons - which are deep within the cloud of electrons surrounding an atom - in the act of bonding monomers together.

The new method created by Percec and his colleagues involves the transfer of outer-sphere electrons, which requires much lower activation energy and, therefore, a different catalytic cycle than atom-transfer radical addition. Both the traditional and SET-LRP processes use copper-based catalysts to drive the reaction, but the SET-LRP reaction uses a common, elemental form of copper - in the form of powder or wire - in the presence of environmentally friendly solvents, such as water, to move the reaction along. This prevents the build up of excess amounts of copper by-products and reduces the need to continually add more catalyst to keep the reaction going.

While this might seem like a refinement of the traditional process - the resulting polymers, in fact, are structurally the same - this method involves an entirely different approach to the chemical reaction, Percec said.

Funding for the research was provided by the National Science Foundation.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Monomer Percec Polymers catalyst polymerization reaction

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>