Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemists Reinvent the Science and Industry of Making Plastics

Chemists at the University of Pennsylvania have created a new process for free radical polymerization, the chemical reaction responsible for creating an enormous array of everyday plastic products, from Styrofoam cups to PVC tubing to car parts.

Unlike the traditional method for living polymerization, which has been around for more than 50 years, this method takes place at room temperature, uses less metal catalyst to drive the reaction and requires a very short reaction time.

We have basically re-written the equation of how the polymerization process can work, which can have a direct impact on the cost of the reaction and the types of materials that we can create. said Virgil Percec, a professor in Penns Department of Chemistry. Polymerization is a billion-dollar-a-year industry, and the applications for the technology are enormous, ranging from medicine to coatings, from moldable forms of rubber to electronics and even complex organic synthesis, all via these radical reactions.

This new technique, called Single Electron Transfer-Living Radical Polymerization, also offers chemists greater control over the molecular architecture of the polymers they create and allows them to use materials that did not work with the traditional process. The mechanism of the synthesis reaction works so well that there is very little worry about undesirable side reactions, and the resulting polymers do not need to be purified to remove the catalyst. Their findings are presented in the Journal of the American Chemical Society, available online now.

The SET-LRP mechanism can allow for a greater control over the three-dimensional structure of the polymers being created, Percec said. The overall process is not only more efficient, it also provides industrial chemists a new creative tool for building consumer and industrial.

Polymerization links individual molecules, referred to as monomers, together to form synthetic products on a larger-scale. In the chemical reaction to create polymers, chemists use catalysts to decrease the amount of energy it takes to create a shared bond between individual atoms of each monomer. The traditional method, referred to as atom-transfer radical polymerization or metal catalyzed living radical polymerization, demands high temperatures and a great amount of the metal catalyst, in part, because the process depends on the energy it takes to transfer inner-sphere electrons - which are deep within the cloud of electrons surrounding an atom - in the act of bonding monomers together.

The new method created by Percec and his colleagues involves the transfer of outer-sphere electrons, which requires much lower activation energy and, therefore, a different catalytic cycle than atom-transfer radical addition. Both the traditional and SET-LRP processes use copper-based catalysts to drive the reaction, but the SET-LRP reaction uses a common, elemental form of copper - in the form of powder or wire - in the presence of environmentally friendly solvents, such as water, to move the reaction along. This prevents the build up of excess amounts of copper by-products and reduces the need to continually add more catalyst to keep the reaction going.

While this might seem like a refinement of the traditional process - the resulting polymers, in fact, are structurally the same - this method involves an entirely different approach to the chemical reaction, Percec said.

Funding for the research was provided by the National Science Foundation.

Greg Lester | EurekAlert!
Further information:

Further reports about: Monomer Percec Polymers catalyst polymerization reaction

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>