Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Reinvent the Science and Industry of Making Plastics

16.10.2006
Chemists at the University of Pennsylvania have created a new process for free radical polymerization, the chemical reaction responsible for creating an enormous array of everyday plastic products, from Styrofoam cups to PVC tubing to car parts.

Unlike the traditional method for living polymerization, which has been around for more than 50 years, this method takes place at room temperature, uses less metal catalyst to drive the reaction and requires a very short reaction time.

We have basically re-written the equation of how the polymerization process can work, which can have a direct impact on the cost of the reaction and the types of materials that we can create. said Virgil Percec, a professor in Penns Department of Chemistry. Polymerization is a billion-dollar-a-year industry, and the applications for the technology are enormous, ranging from medicine to coatings, from moldable forms of rubber to electronics and even complex organic synthesis, all via these radical reactions.

This new technique, called Single Electron Transfer-Living Radical Polymerization, also offers chemists greater control over the molecular architecture of the polymers they create and allows them to use materials that did not work with the traditional process. The mechanism of the synthesis reaction works so well that there is very little worry about undesirable side reactions, and the resulting polymers do not need to be purified to remove the catalyst. Their findings are presented in the Journal of the American Chemical Society, available online now.

The SET-LRP mechanism can allow for a greater control over the three-dimensional structure of the polymers being created, Percec said. The overall process is not only more efficient, it also provides industrial chemists a new creative tool for building consumer and industrial.

Polymerization links individual molecules, referred to as monomers, together to form synthetic products on a larger-scale. In the chemical reaction to create polymers, chemists use catalysts to decrease the amount of energy it takes to create a shared bond between individual atoms of each monomer. The traditional method, referred to as atom-transfer radical polymerization or metal catalyzed living radical polymerization, demands high temperatures and a great amount of the metal catalyst, in part, because the process depends on the energy it takes to transfer inner-sphere electrons - which are deep within the cloud of electrons surrounding an atom - in the act of bonding monomers together.

The new method created by Percec and his colleagues involves the transfer of outer-sphere electrons, which requires much lower activation energy and, therefore, a different catalytic cycle than atom-transfer radical addition. Both the traditional and SET-LRP processes use copper-based catalysts to drive the reaction, but the SET-LRP reaction uses a common, elemental form of copper - in the form of powder or wire - in the presence of environmentally friendly solvents, such as water, to move the reaction along. This prevents the build up of excess amounts of copper by-products and reduces the need to continually add more catalyst to keep the reaction going.

While this might seem like a refinement of the traditional process - the resulting polymers, in fact, are structurally the same - this method involves an entirely different approach to the chemical reaction, Percec said.

Funding for the research was provided by the National Science Foundation.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Monomer Percec Polymers catalyst polymerization reaction

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>