Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading reason for corneal transplants comes into focus

16.10.2006
Johns Hopkins researchers begin to figure out 'Fuchs'

Guided by families with an unusual number of cases, scientists at Johns Hopkins have discovered the genetic origins of at least one form of Fuchs corneal dystrophy, FCD, the leading reason for corneal transplantation in the United States.

In one form or another, FCD's trademark deterioration of the cells covering the clear, outermost lens of the eye affects more than 4 percent of the population over 40. Late in life, the dystrophy causes swelling of the cornea and can severely affect vision, making it impossible to see well even with glasses or contact lenses. It's believed that various forms of FCD are due to multiple gene mutations.

In a report in the September issue of Investigative Ophthalmology, a team led by Hopkins ophthalmologist John Gottsch, M.D., says they were able to map a common form of Fuchs, found most often in women, to chromosome 18.

... more about:
»FCD »Gottsch »Mutation »corneal »dystrophy

"Finding this chromosomal locus is putting us in the right neighborhood to find culprit genes," says Gottsch. "Now we have to start knocking on every door."

Gottsch is heartened by success with earlier Fuchs gene-hunting studies. The Hopkins group tracked down its first FCD-related gene in a Virginia family with multiple, early onset cases. That gene, labeled COL8A2, was mapped to chromosome 1.

Prior to that, a large Indiana family with FCD, including a boy of 10, led the team to yet another gene variant, on chromosome 13.

The scientists use linkage analysis, a process-of-elimination gene-hunting technique that analyzes inheritance patterns in families with relatively large numbers of affected individuals and trace genetic traits co-inherited or "linked" with the disorder. Researchers search for a common location for all the linked traits until they wind up with a single chromosome address.

In his latest study, Gottsch used not only linkage analysis but also a method of identifying variations in DNA sequences to examine three FCD families in which 43 members had the disease and 33 did not. He and his coworkers were able to narrow down the linked traits in all three families to the short arm of chromosome 18 (the whole "address" is 8q21.2-q21.32).

"Because the same location popped up for three different families with similar forms of Fuchs dystrophy, we believe we have the chromosome locus for the most common genetic mutation resulting in Fuchs," he said. "It's a painstaking process of elimination, but now we are closing in on the gene that causes what we believe is the most widespread form of Fuchs, not just the rare types in individual families. Our methods have clearly shown that Fuchs is not just one disease, but rather a disorder with several genetic flavors."

Gottsch became interested in FCD more than six years ago when he treated a woman with a corneal dystrophy of unknown origin that looked remarkably similar to FCD despite slightly different symptoms. "I knew it wasn't classic Fuchs, but rather something new," remembers Gottsch. "In the end, it wasn't Fuchs at all, but a sort of mutated distant cousin of the disease. It made me wonder, however, if there were more genetic variants of the disease out there."

He stopped wondering a few years later when he examined the Indiana family and discovered what he thought at the time was the youngest case of FCD ever described in the scientific literature, the 10-year-old boy. However, literature published 25 years ago described a Virginia family with a 3-year-old girl with the disease. Gottsch contacted the original investigator and was able to reexamine the family. He was then able to determine the gene that afflicted this family and that it resulted in a unique and severe form of FCD.

"I knew Fuchs was not one but several diseases with multiple genes involved when I started comparing the symptoms of the two families," Gottsch says. "The Indiana family members developed their disease late in life, women were mostly affected, and those who were had large bumps, or guttae, on the back of the cornea. The Virginia family had severe early disease with men and women equally affected, and the cornea had smaller, finer bumps."

Gottsch is looking to one day use various gene therapies to suppress the mutations that he has found. It is hoped that someday the millions of people who suffer from FCD in the United States will eventually benefit from having the genetic basis of their disease identified and gene therapies developed. At present, corneal transplantation is the only solution for those severely affected.

Jeff Ventura | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: FCD Gottsch Mutation corneal dystrophy

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>