Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading reason for corneal transplants comes into focus

16.10.2006
Johns Hopkins researchers begin to figure out 'Fuchs'

Guided by families with an unusual number of cases, scientists at Johns Hopkins have discovered the genetic origins of at least one form of Fuchs corneal dystrophy, FCD, the leading reason for corneal transplantation in the United States.

In one form or another, FCD's trademark deterioration of the cells covering the clear, outermost lens of the eye affects more than 4 percent of the population over 40. Late in life, the dystrophy causes swelling of the cornea and can severely affect vision, making it impossible to see well even with glasses or contact lenses. It's believed that various forms of FCD are due to multiple gene mutations.

In a report in the September issue of Investigative Ophthalmology, a team led by Hopkins ophthalmologist John Gottsch, M.D., says they were able to map a common form of Fuchs, found most often in women, to chromosome 18.

... more about:
»FCD »Gottsch »Mutation »corneal »dystrophy

"Finding this chromosomal locus is putting us in the right neighborhood to find culprit genes," says Gottsch. "Now we have to start knocking on every door."

Gottsch is heartened by success with earlier Fuchs gene-hunting studies. The Hopkins group tracked down its first FCD-related gene in a Virginia family with multiple, early onset cases. That gene, labeled COL8A2, was mapped to chromosome 1.

Prior to that, a large Indiana family with FCD, including a boy of 10, led the team to yet another gene variant, on chromosome 13.

The scientists use linkage analysis, a process-of-elimination gene-hunting technique that analyzes inheritance patterns in families with relatively large numbers of affected individuals and trace genetic traits co-inherited or "linked" with the disorder. Researchers search for a common location for all the linked traits until they wind up with a single chromosome address.

In his latest study, Gottsch used not only linkage analysis but also a method of identifying variations in DNA sequences to examine three FCD families in which 43 members had the disease and 33 did not. He and his coworkers were able to narrow down the linked traits in all three families to the short arm of chromosome 18 (the whole "address" is 8q21.2-q21.32).

"Because the same location popped up for three different families with similar forms of Fuchs dystrophy, we believe we have the chromosome locus for the most common genetic mutation resulting in Fuchs," he said. "It's a painstaking process of elimination, but now we are closing in on the gene that causes what we believe is the most widespread form of Fuchs, not just the rare types in individual families. Our methods have clearly shown that Fuchs is not just one disease, but rather a disorder with several genetic flavors."

Gottsch became interested in FCD more than six years ago when he treated a woman with a corneal dystrophy of unknown origin that looked remarkably similar to FCD despite slightly different symptoms. "I knew it wasn't classic Fuchs, but rather something new," remembers Gottsch. "In the end, it wasn't Fuchs at all, but a sort of mutated distant cousin of the disease. It made me wonder, however, if there were more genetic variants of the disease out there."

He stopped wondering a few years later when he examined the Indiana family and discovered what he thought at the time was the youngest case of FCD ever described in the scientific literature, the 10-year-old boy. However, literature published 25 years ago described a Virginia family with a 3-year-old girl with the disease. Gottsch contacted the original investigator and was able to reexamine the family. He was then able to determine the gene that afflicted this family and that it resulted in a unique and severe form of FCD.

"I knew Fuchs was not one but several diseases with multiple genes involved when I started comparing the symptoms of the two families," Gottsch says. "The Indiana family members developed their disease late in life, women were mostly affected, and those who were had large bumps, or guttae, on the back of the cornea. The Virginia family had severe early disease with men and women equally affected, and the cornea had smaller, finer bumps."

Gottsch is looking to one day use various gene therapies to suppress the mutations that he has found. It is hoped that someday the millions of people who suffer from FCD in the United States will eventually benefit from having the genetic basis of their disease identified and gene therapies developed. At present, corneal transplantation is the only solution for those severely affected.

Jeff Ventura | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: FCD Gottsch Mutation corneal dystrophy

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>