Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical reaction between matter and antimatter realized for the first time: it brings about the formation of protonium

16.10.2006
Matter and antimatter particles run into each other and they annihilate into a small flash of energy: it happened at the first light of the Universe and it happens every day in the particles accelerators throughout the world.

The international collaboration Athena, that involves Genoa, Pavia and Brescia Infn researchers, has yet been able to induce for the first time a chemical reaction between matter and antimatter that produced protonium: it is formed of one hydrogen ion and one anti-hydrogen ion, that is to say a proton and an antiproton. The result has been published today Friday, October 13, by Physical Review Letters.

The Athena experiment, an “antimatter factory” is fitted out at Cern, in Geneva and it produced for the first time in 2002 an antimatter “cloud”, formed of some thousands of anti-hydrogen atoms. The result was published by Nature review. Nevertheless, researchers pointed out a strange structure that appeared in the distribution of annihilation positions of the antimatter. “Athena stopped taking data at the end of 2004, but the analysis of the data gathered up that moment went on and the research published today is one of the result of this activity. It explains exactly that, at that time, “mysterious” structure, says Evandro Lodi Rizzini, who coordinated this analysis and who belongs to Infn associated group of Brescia.

Atoms of anti-hydrogen in Athena were created making come in contact anti-protons and anti-electrons in a high vacuum environment. In these conditions about 10.000-100.000 hydrogen molecules per a cube centimetre remain, versus the many thousands milliard and milliard molecules that would be present in a no vacuum environment. “Probably, exactly these remaining molecules are responsible for the observed phenomenon. We believe in fact that the anti-electrons, which were put in the vacuum room, caused the ionization of some hydrogen molecules, by removing an electron from them. These ionized molecules (H2+) have been then attracted by the antiprotons, which can be considered in this case anti-hydrogen ions. The chemical reaction that produced the protonium derived exactly from this process” goes on Evandro Lodi Rizzini.

... more about:
»Antimatter »Hydrogen »anti-hydrogen »protonium

Production of protonium was in the past already observed, but in different conditions. This is the first time that this simple and symmetric structure of matter and anti-matter - that looks like a hydrogen atom and an anti-hydrogen one - is produced through a chemical reaction. This result opens a course for the realization of high-efficiency protonium sources. We will be able to study in details fundamental characteristics of this structure, in particular the energy levels, in order to compare them with the theoretical models.

Barbara Gallavotti | alfa
Further information:
http://www.infn.it
http://www.infn.it/news/news.php?id=213

Further reports about: Antimatter Hydrogen anti-hydrogen protonium

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>