Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical reaction between matter and antimatter realized for the first time: it brings about the formation of protonium

16.10.2006
Matter and antimatter particles run into each other and they annihilate into a small flash of energy: it happened at the first light of the Universe and it happens every day in the particles accelerators throughout the world.

The international collaboration Athena, that involves Genoa, Pavia and Brescia Infn researchers, has yet been able to induce for the first time a chemical reaction between matter and antimatter that produced protonium: it is formed of one hydrogen ion and one anti-hydrogen ion, that is to say a proton and an antiproton. The result has been published today Friday, October 13, by Physical Review Letters.

The Athena experiment, an “antimatter factory” is fitted out at Cern, in Geneva and it produced for the first time in 2002 an antimatter “cloud”, formed of some thousands of anti-hydrogen atoms. The result was published by Nature review. Nevertheless, researchers pointed out a strange structure that appeared in the distribution of annihilation positions of the antimatter. “Athena stopped taking data at the end of 2004, but the analysis of the data gathered up that moment went on and the research published today is one of the result of this activity. It explains exactly that, at that time, “mysterious” structure, says Evandro Lodi Rizzini, who coordinated this analysis and who belongs to Infn associated group of Brescia.

Atoms of anti-hydrogen in Athena were created making come in contact anti-protons and anti-electrons in a high vacuum environment. In these conditions about 10.000-100.000 hydrogen molecules per a cube centimetre remain, versus the many thousands milliard and milliard molecules that would be present in a no vacuum environment. “Probably, exactly these remaining molecules are responsible for the observed phenomenon. We believe in fact that the anti-electrons, which were put in the vacuum room, caused the ionization of some hydrogen molecules, by removing an electron from them. These ionized molecules (H2+) have been then attracted by the antiprotons, which can be considered in this case anti-hydrogen ions. The chemical reaction that produced the protonium derived exactly from this process” goes on Evandro Lodi Rizzini.

... more about:
»Antimatter »Hydrogen »anti-hydrogen »protonium

Production of protonium was in the past already observed, but in different conditions. This is the first time that this simple and symmetric structure of matter and anti-matter - that looks like a hydrogen atom and an anti-hydrogen one - is produced through a chemical reaction. This result opens a course for the realization of high-efficiency protonium sources. We will be able to study in details fundamental characteristics of this structure, in particular the energy levels, in order to compare them with the theoretical models.

Barbara Gallavotti | alfa
Further information:
http://www.infn.it
http://www.infn.it/news/news.php?id=213

Further reports about: Antimatter Hydrogen anti-hydrogen protonium

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>