Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Zilch” instead of explosion

Russian researchers know how to inhibit the hydrogen-aerial mixture explosion or at least to reduce its power significantly. To this end, it is sufficient to add a small amount of special substances - inhibitors –to the potentially dangerous gas mixture.

They are being developed and tested by specialists of two Moscow academic institutes - Institute of Thermal Physics of Extreme Conditions (United Institute of High Temperatures, Russian Academy of Sciences) and the Institute of Structural Macrokinetics and Materials Science (ISMAN). By clarifying the mechanism of processes taking place in the course of gas combustion, they are learning to control these processes. The findings are extremely promising.

The most important phase of the investigation has become the ISMAN development of the chain-thermal explosion theory. The theory is based on the prerequisite that chain processes in gas-phase combustion play a determinative role not only at a low pressure but at the atmospheric pressure and a higher one. This theory allowed to find inhibitors, which break off chain avalanche, and therefore, in the long run, reduce explosive power. Such an inhibitor turned out to be the mixture of burning gases - propane, butane and propylene - taken at a defined proportion.

To verify the theory in practice, a special blasting chamber is at the disposal of the researchers. The chamber was made in Severodvinsk by specialists who design submarines, of special ultrastrong armored steel, this ideally spherical chamber is capable of standing an explosion of a ton of trinitrotoluene. No wonder – given the internal diameter of 12 meters, the deviations from this value make no more than 10 millimeters at any point of its surface! It is in this chamber equipped with all necessary facilities that the researchers are making experiments. They do not simply let in a large quantity of hydrogen and air and explode it. They use a special reactor – a cone with piezoelectric sensors and some other measurement instrumentation placed along its surface and at the vertex. It is because the drastic reduction of reaction space (at the vertex of cone) enables to “concentrate” energy of explosion and to achieve maximum high pressure – up to 1,000 atmospheres.

... more about:
»Investigation »chamber »mixture »special

It has turned out that introduction into the hydrogen/air combustible mixture of only 1.5 percent of inhibitory mixture allows to reduce the pressure in the cone by 20 times, and sometimes by 30 times, i.e., actually to suppress the explosion! Instead of blowing up, the dangerous mixture simply burns down – and there is zilch in place of explosion!

Having made sure that it is possible in principle to suppress the explosion chemically, the researchers continue their investigations. They examine reaction mechanisms in more detail, look for new inhibitors, try to reduce their quantity – this is important both in terms of ecological and economic considerations. Besides, the authors have now seriously passed on to search of inhibitors for the air/methane mixtures – the need for such investigations is evident: mines and houses with gas-stoves, alas, continue to blow up.

To make the researchers’ effort more effective, a special building has been erected this year around the chamber, so that the researchers did not have to stiffen on their “barrel” (as they call the blasting chamber among themselves) working during a winter snowstorm in freezing wind.

Nadezda Markina | alfa
Further information:

Further reports about: Investigation chamber mixture special

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>