Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make nanosheets that mimic protein formation

13.10.2006
How to direct and control the self-assembly of nanoparticles is a fundamental question in nanotechnology.

University of Michigan researchers have discovered a way to make nanocrystals in a fluid assemble into free-floating sheets the same way some protein structures form in living organisms.

"This establishes an important connection between two basic building blocks in biology and nanotechnology, that is, proteins and nanoparticles, and this is very exciting for assembling materials from the bottom up for a whole slew of applications ranging from drug delivery to energy," said Sharon Glotzer, professor of chemical engineering and materials science and engineering.

Glotzer and Nicholas Kotov, associate professor of chemical engineering, and their graduate students and post doctoral researchers have co-authored a paper scheduled to appear Oct. 13 in the journal Science.

... more about:
»Glotzer »Protein »S-layer »nanoparticle

"The importance of this work is in making a key connection between the world of proteins and the world of nanotechnology" Kotov said. "Once we know how to manipulate the forces between the nanoparticles and their ability to self-organize, it will help us in a variety of practical applications from light-harvesting nanoparticle devices to new drugs which can act like proteins, but are actually nanoparticles."

The sheets, which can appear colored under UV illumination from bright green to dark red depending on the nanoparticle size, are made from cadmium telluride crystals, a material used in solar cells. The sheets are about 2 microns in width, about 1/5 the thickness of a human hair.

Scientists have long known how to coax nanoparticles into forming sheets, Glotzer said. But those sheets have only been achieved when the particles were on a surface or at an interface between two fluids, never while suspended in a single fluid.

The work started in Kotov's lab three years ago, when he and his team observed the sheets in experiments. Though they created them, they weren't sure how.

"We were aware of certain proteins in living organisms that self-assemble into layers, called S-layers," Kotov said. S-layer proteins comprise the outermost cell envelope of a wide variety of bacteria and other single-celled, prokaryotic organisms called archaea, and they are able to form 2-d sheets with square, hexagonal, and other packings at surfaces and interfaces, as well as suspended in fluid. The group sought to make the connection between the forces governing S-layer protein assembly and the forces governing the nanoparticle assembly. That's when Glotzer's group, whose expertise is in computer modeling and simulation, became involved.

"It's likely that the forces between S-layer proteins are highly anisotropic, and we suspected this was also a feature of the nanoparticles," Glotzer said. "Computer simulations allowed us to further develop and test this hypothesis."

Post doctoral researcher Zhenli Zhang of Glotzer's group tried various combinations of forces based on information gleaned from experiments performed by post doctoral Zhiyong Tang of Kotov's group. The team discovered that the unique shape of the CdTe nanocrystals gave rise to a combination of forces that conspired to produce the unusual two-dimensional packing. Subsequent experiments by Kotov's group showed that if any of the forces were missing, the sheets would not form, confirming the simulation predictions.

"Self-assembly is nature's basic building principle for producing organized arrays of biomolecules with controlled geometrical and physicochemical surface properties," Glotzer said. "In the fabrication of functional nanoscale materials and devices, self-assembly offers substantial advantages over traditional manufacturing approaches, if we can design the building blocks appropriately. This is what we're trying to do."

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Glotzer Protein S-layer nanoparticle

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>