Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make nanosheets that mimic protein formation

13.10.2006
How to direct and control the self-assembly of nanoparticles is a fundamental question in nanotechnology.

University of Michigan researchers have discovered a way to make nanocrystals in a fluid assemble into free-floating sheets the same way some protein structures form in living organisms.

"This establishes an important connection between two basic building blocks in biology and nanotechnology, that is, proteins and nanoparticles, and this is very exciting for assembling materials from the bottom up for a whole slew of applications ranging from drug delivery to energy," said Sharon Glotzer, professor of chemical engineering and materials science and engineering.

Glotzer and Nicholas Kotov, associate professor of chemical engineering, and their graduate students and post doctoral researchers have co-authored a paper scheduled to appear Oct. 13 in the journal Science.

... more about:
»Glotzer »Protein »S-layer »nanoparticle

"The importance of this work is in making a key connection between the world of proteins and the world of nanotechnology" Kotov said. "Once we know how to manipulate the forces between the nanoparticles and their ability to self-organize, it will help us in a variety of practical applications from light-harvesting nanoparticle devices to new drugs which can act like proteins, but are actually nanoparticles."

The sheets, which can appear colored under UV illumination from bright green to dark red depending on the nanoparticle size, are made from cadmium telluride crystals, a material used in solar cells. The sheets are about 2 microns in width, about 1/5 the thickness of a human hair.

Scientists have long known how to coax nanoparticles into forming sheets, Glotzer said. But those sheets have only been achieved when the particles were on a surface or at an interface between two fluids, never while suspended in a single fluid.

The work started in Kotov's lab three years ago, when he and his team observed the sheets in experiments. Though they created them, they weren't sure how.

"We were aware of certain proteins in living organisms that self-assemble into layers, called S-layers," Kotov said. S-layer proteins comprise the outermost cell envelope of a wide variety of bacteria and other single-celled, prokaryotic organisms called archaea, and they are able to form 2-d sheets with square, hexagonal, and other packings at surfaces and interfaces, as well as suspended in fluid. The group sought to make the connection between the forces governing S-layer protein assembly and the forces governing the nanoparticle assembly. That's when Glotzer's group, whose expertise is in computer modeling and simulation, became involved.

"It's likely that the forces between S-layer proteins are highly anisotropic, and we suspected this was also a feature of the nanoparticles," Glotzer said. "Computer simulations allowed us to further develop and test this hypothesis."

Post doctoral researcher Zhenli Zhang of Glotzer's group tried various combinations of forces based on information gleaned from experiments performed by post doctoral Zhiyong Tang of Kotov's group. The team discovered that the unique shape of the CdTe nanocrystals gave rise to a combination of forces that conspired to produce the unusual two-dimensional packing. Subsequent experiments by Kotov's group showed that if any of the forces were missing, the sheets would not form, confirming the simulation predictions.

"Self-assembly is nature's basic building principle for producing organized arrays of biomolecules with controlled geometrical and physicochemical surface properties," Glotzer said. "In the fabrication of functional nanoscale materials and devices, self-assembly offers substantial advantages over traditional manufacturing approaches, if we can design the building blocks appropriately. This is what we're trying to do."

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Glotzer Protein S-layer nanoparticle

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>