Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory feedback during speech: The brain attunes to more than just sound

11.10.2006
Using robotics to manipulate the brain's perception of jaw movement while words are spoken, researchers have deepened our understanding of the importance of non-auditory sensory cues in the brain's control of speech.

The findings are reported by Sazzad Nasir and David Ostry of McGill University and appear in the October 10th issue of the journal Current Biology, published by Cell Press.

When we speak, our ability to effectively produce words is dependent not only on auditory feedback signals to the brain, but also on so-called somatosensory information that informs the brain of the relative positioning of different parts of the body--a process known as proprioception. Cues of this sort that might be relevant during speech include those that inform the brain of the openness of the jaw or the changing positions of the tongue or lips.

To investigate how such somatosensory cues are used during speech production, the researchers in the new work were able to dissociate the contribution of these cues from auditory cues by using a robotic device that slightly altered the path of the jaw's motion at different points during speech, but did not significantly disrupt the acoustic quality of the words being spoken. The researchers were able to manipulate jaw motion at specific points during speaking and were thereby able to specifically target vowel or consonant sounds to study whether the production of certain types of sound was especially sensitive to somatosensory cues. The researchers found that over time, the subjects in the experiments learned to compensate for the robotic interference, thereby "correcting" the somatosensory feedback the brain receives during speech. This learning took place even when speech sounded normal, and it occurred when the robotic interference was applied during both vowel and consonant sound production.

... more about:
»Robotic »Speech »somatosensory

The findings support the idea that accurate acoustic quality is not the brain's only goal during the motor control of speech--precision in expected somatosensory feedback cues is also an important endpoint.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Robotic Speech somatosensory

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>