Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensory feedback during speech: The brain attunes to more than just sound

Using robotics to manipulate the brain's perception of jaw movement while words are spoken, researchers have deepened our understanding of the importance of non-auditory sensory cues in the brain's control of speech.

The findings are reported by Sazzad Nasir and David Ostry of McGill University and appear in the October 10th issue of the journal Current Biology, published by Cell Press.

When we speak, our ability to effectively produce words is dependent not only on auditory feedback signals to the brain, but also on so-called somatosensory information that informs the brain of the relative positioning of different parts of the body--a process known as proprioception. Cues of this sort that might be relevant during speech include those that inform the brain of the openness of the jaw or the changing positions of the tongue or lips.

To investigate how such somatosensory cues are used during speech production, the researchers in the new work were able to dissociate the contribution of these cues from auditory cues by using a robotic device that slightly altered the path of the jaw's motion at different points during speech, but did not significantly disrupt the acoustic quality of the words being spoken. The researchers were able to manipulate jaw motion at specific points during speaking and were thereby able to specifically target vowel or consonant sounds to study whether the production of certain types of sound was especially sensitive to somatosensory cues. The researchers found that over time, the subjects in the experiments learned to compensate for the robotic interference, thereby "correcting" the somatosensory feedback the brain receives during speech. This learning took place even when speech sounded normal, and it occurred when the robotic interference was applied during both vowel and consonant sound production.

... more about:
»Robotic »Speech »somatosensory

The findings support the idea that accurate acoustic quality is not the brain's only goal during the motor control of speech--precision in expected somatosensory feedback cues is also an important endpoint.

Heidi Hardman | EurekAlert!
Further information:

Further reports about: Robotic Speech somatosensory

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>