Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory feedback during speech: The brain attunes to more than just sound

11.10.2006
Using robotics to manipulate the brain's perception of jaw movement while words are spoken, researchers have deepened our understanding of the importance of non-auditory sensory cues in the brain's control of speech.

The findings are reported by Sazzad Nasir and David Ostry of McGill University and appear in the October 10th issue of the journal Current Biology, published by Cell Press.

When we speak, our ability to effectively produce words is dependent not only on auditory feedback signals to the brain, but also on so-called somatosensory information that informs the brain of the relative positioning of different parts of the body--a process known as proprioception. Cues of this sort that might be relevant during speech include those that inform the brain of the openness of the jaw or the changing positions of the tongue or lips.

To investigate how such somatosensory cues are used during speech production, the researchers in the new work were able to dissociate the contribution of these cues from auditory cues by using a robotic device that slightly altered the path of the jaw's motion at different points during speech, but did not significantly disrupt the acoustic quality of the words being spoken. The researchers were able to manipulate jaw motion at specific points during speaking and were thereby able to specifically target vowel or consonant sounds to study whether the production of certain types of sound was especially sensitive to somatosensory cues. The researchers found that over time, the subjects in the experiments learned to compensate for the robotic interference, thereby "correcting" the somatosensory feedback the brain receives during speech. This learning took place even when speech sounded normal, and it occurred when the robotic interference was applied during both vowel and consonant sound production.

... more about:
»Robotic »Speech »somatosensory

The findings support the idea that accurate acoustic quality is not the brain's only goal during the motor control of speech--precision in expected somatosensory feedback cues is also an important endpoint.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Robotic Speech somatosensory

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>