Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pheromone from mother's milk may rapidly promote learning in newborn mammals

11.10.2006
By studying the ability of newborn rabbit pups to learn the significance of new odors, researchers have found that a mammary pheromone secreted in mother's milk may act as a chemical booster that facilitates the ability of pups to quickly associate environmental odors with the opportunity to nurse.

The findings, which deepen our understanding of pheromone function and how learning occurs in the earliest days of life, are reported in the October 10th issue of the journal Current Biology, published by Cell Press, by a team including Gérard Coureaud and Anne-Sophie Moncomble and colleagues from the Centre Européen des Sciences du Goût in Dijon, which is supported by the Centre National de la Recherche Scientifique, and the Université de Bourgogne and Inra. Benoist Schaal, another author of the study, is the director of the Centre Européen des Sciences du Goût.

Newborn mammals are highly dependent on their mother's milk for survival, and they typically exhibit a defined sequence of actions when searching for milk. This searching behavior rapidly becomes increasingly directed, showing that mammalian newborns are efficient learners. Past studies of this very early learning in the European rabbit (Oryctolagus cuniculus) have shown that newborn pups engage in typical food-searching movements in response to olfactory signals that include the mammary pheromone secreted in mother's milk. The ability of newborns to rapidly improve their milk-finding skills likely involves learning that "new" odors--for example, those from the mother's abdomen, or of milk itself--are associated with food.

In the new work, the researchers investigated whether the mammary pheromone plays a role in the ability of newborns to learn to associate other odors with the availability of milk. By presenting newborns with the pheromone in combination with an otherwise "neutral" odor and subsequently testing whether the neutral odor alone would later elicit the typical food-searching behavior in the pups, the researchers were able to show that the pheromone is indeed effective at promoting the ability of the newborns to learn the significance of new odors. The researchers showed that this pheromone-induced learning is efficient from the time of birth and is capable of promoting the learning of successive different odorants presented to newborn pups.

... more about:
»Pheromone »Rapidly »ability »mammary »newborn »odor

Given its ability to promote the learning of new olfactory cues, the mammary pheromone may act as a kind of organizing signal that boosts the brain's ability to associate new odors with milk availability. This would in turn facilitate an essential skill: the ability of newborn pups to rapidly hone their suckling instincts during the first days of life.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Pheromone Rapidly ability mammary newborn odor

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>