Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers uncover critical player in cell communication

09.10.2006
Implications for cause of rare cognitive disorder

Johns Hopkins researchers have teased out the function of a protein implicated in Williams-Beuren syndrome, a rare cognitive disorder associated with overly social behavior and lack of spatial awareness. Called TFII-I, or TF "two eye," the protein long known to help control a cell's genes also controls how much calcium a cell takes in, a function critical for all cells, including nerves in the brain. The study will be published this week in Science.

"While the previously described function of TFII-I very well also could contribute to the cognitive defects of Williams-Beuren syndrome, its role controlling calcium makes much more sense," says Stephen Desiderio, M.D., Ph.D., a professor of molecular biology and genetics and director of the Institute of Basic Biomedical Sciences at Hopkins. And, says Desiderio, others have shown that defects in a cell's ability to take in calcium can lead to other neurological and behavioral conditions.

Williams-Beuren syndrome is associated with craniofacial defects, problems with the aorta and a very specific mental retardation that causes those affected to be talkative, sociable and empathetic but at the same time have significant spatial learning defects. Those affected are highly expressive, have exceptionally strong language abilities and "can talk up a storm," for example. But at the same time, they are poor at global organization, having problems re-creating patterns in drawings. The syndrome occurs in roughly one in 25,000 births and is caused by a deletion of a small section of chromosome 7 that contains several genes, including the gene that encodes the TFII-I protein.

... more about:
»Calcium »Desiderio »Syndrome »TFII-I »defects

The discovery came after Desiderio and his team used biochemical "bait" to fish for candidate proteins that physically bind to TFII-I. The fishing expedition returned one protein known to control when and how much calcium a cell takes in.

"The partner we found in the fishing experiment and the abundance of TFII-I outside the cell nucleus led us to suspect that this protein must be doing more than regulate gene expression," says Desiderio.

Under normal conditions, calcium does not flow freely into and out of cells until a demand for it - such as a muscle contraction or nerve function -- triggers cells to take up the free floating element from their surroundings. Cells store calcium until still other signals occur to release it again.

"The finding was stunning to us because calcium is one of the most important messengers in cells," says Desiderio, "and both it and TFII-I are in every cell. That affirmed our suspicion that TFII-I could be doing something important with calcium signaling."

In one experiment, the Hopkins team knocked down the amount of TFII-I in lab-grown cells and looked for changes in calcium flow under a high-power microscope using a dye that glows when it comes in contact with calcium. A camera attached to the microscope recorded the brightness of the glow and fed that measure into a computer that calculates the amount of calcium.

Knocking down TFII-I and separately assaulting the cells with chemicals caused the cells to take up more calcium than usual.

The researchers realized that when they depleted the cells of TFII-I, the cell responded by installing more calcium channels in their surfaces that allow calcium and only calcium to enter the cell. "We think TFII-I must control calcium entry into the cell by somehow limiting the number of calcium channels at the cell's surface," says Desiderio.

"There's good evidence suggesting that the frequency and intensity of this ebb and flow of calcium can determine a cell's response to external cues," says Desiderio. "TFII-I may be a universal player in communication between cells, in the brain, the immune system and elsewhere."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Calcium Desiderio Syndrome TFII-I defects

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>