Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover misfolded protein clumps common to dementia, Lou Gehrig's disease

06.10.2006
Study provides new insights into neurological disorders

Scientists have identified a misfolded, or incorrectly formed, protein common to two devastating neurological diseases, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), according to a report in the Oct. 6, 2006, issue of Science. The findings suggest that certain forms of FTD, ALS and possibly other neurological diseases might share a common pathological process.

Virginia Lee, Ph.D., and John Trojanowski, M.D., Ph.D., of the University of Pennsylvania, led an international team of scientists in this discovery. The work was funded by the National Institute on Aging (NIA), part of the National Institutes of Health (NIH), and was done at the NIA-funded Alzheimer's Disease Center at the University of Pennsylvania School of Medicine Institute on Aging.

"This exciting basic science discovery provides the first molecular link between a dementia--FTD--and a motor neuron disease--ALS. It will advance understanding of the pathological processes of FTD and ALS, and possibly of other neurological disorders," says NIA director Richard J. Hodes, M.D. Improved understanding of underlying disease processes is critically important in pointing researchers toward the development of therapies for FTD, ALS and other neurodegenerative diseases, Hodes and the study authors note.

FTD affects the frontal and temporal lobes of the brain. People with FTD may exhibit uninhibited and socially inappropriate behavior, changes in personality and, in late stages, loss of memory, motor skills and speech. After Alzheimer's disease, it is the most common cause of dementia in people under age 65.

ALS is a progressive disease of brain and spinal cord motor neurons that control movement. Over time, walking, eating, speaking and breathing become more difficult in this fatal disease. Some people with ALS also have FTD, and some with FTD also develop ALS, suggesting that common mechanisms might underlie these two diseases.

In certain neurodegenerative diseases, including ALS and some forms of FTD, scientists have identified clumps of protein--or inclusion bodies--that accumulate in brain cells and neurons. However, understanding why they form and what they contain has been elusive. Lee and Trojanowski have long sought to solve that mystery.

Following years of research, they have now identified TDP-43 as a constituent part of the clumps that form in ALS and in the most common form of FTD. Although its precise role is not well understood, TDP-43 is involved in the complex process of transcribing and regulating genetic information in the nucleus of the cell.

"There is much more to learn about how this nuclear protein is clumped in the cytoplasm of cells and about the mechanism by which it is implicated in two distinctly different diseases," says Stephen Snyder, Ph.D., program director, etiology of Alzheimer's disease, NIA Neuroscience and Neuropsychology of Aging Program. "It is possible that the TDP-43 protein will be a key to a more complete understanding of both FTD and ALS."

Linda Joy | EurekAlert!
Further information:
http://www.nia.nih.gov

Further reports about: FTD Neuron Protein clumps dementia neurodegenerative disease

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>