Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers demonstrate how white blood cells cannibalize virus-infected cells

05.10.2006
Research helps explain how the human immune system works, possible new way to measure vaccine effectiveness

Researchers at the Vaccine and Gene Therapy Institute (VGTI) at Oregon Health & Science University have demonstrated how certain white blood cells literally eat virus-infected cells while fighting disease at the microscopic level. The research not only helps provide a clearer understanding of the body's immune system, it also offers hope of a new method for gauging vaccine effectiveness. The research is published in the current edition of the journal Nature Medicine.

CD8+ T-cells are specialized white blood cells that serve an important role in the body's immune system. The cells attack and destroy disease "invaders" such as viruses in the body. Previous studies indicated that T-cells may consume parts of cells with which they interact, but this new research shows this can happen in response to a systemic viral infection.

"If you use a fluorescent dye to stain infected cells, you can literally watch T-cells consume membranes and outer surfaces of diseased cells. As they destroy and cannibalize the fluorescently labeled cells, they become labeled with the fluorescent dye themselves," explained Mark Slifka, Ph.D., a researcher in the VGTI who led the research. Slifka is also a scientist in the Division of Pathobiology and Immunology at the Oregon National Primate Research Center and holds a concurrent appointment in the Department of Molecular Microbiology and Immunology in the OHSU School of Medicine.

"While we don't fully understand why this happens, one possibility is that the T-cell consumes virus-infected cells to fuel itself in the continued fight against an ongoing infection. It's sort of like invaders that pillage their defeated foe's supplies and then continue the fight."

The way in which Slifka and his colleague, Carol Beadling, made this discovery was quite serendipitous. The researchers were studying the interactions between virus-specific T-cells and fluorescently labeled infected cells when they noticed that the T-cells also began to glow with the fluorescent dye. Further investigation revealed that the CD8+ T-cells, often referred to as "killer" T-cells, were literally ingesting parts of the virus-infected cells that they were attacking.

Slifka and Beadling's findings follow a discovery by David Parker, Ph.D., a professor of Molecular Microbiology and Immunology in the OHSU School of Medicine. Parker and his colleague, Scott Wetzel, noted a similar behavior in CD4+ T-cells, often called "helper" T-cells, which are less aggressive T-cells but also an important aspect of the immune system.

"Another interesting finding for our lab is that in some ways, T-cells can be picky eaters," explained Slifka. "Although they will destroy almost any infected cell, they prefer to eat certain types of cells but not others. For instance, we noted that CD8+ T-cells consumed other white blood cells such as infected B-cells, but they were not fond of eating infected fibroblasts, a type of cell found in connective tissue. They're sort of like a 5-year-old who loves to eat cookies, but refuses to eat their brussels sprouts."

The researchers believe that these findings may be useful as a method for determining a vaccine's effectiveness during the process of immunization. Measuring the levels at which CD8+ T-cells respond to and consume a candidate vaccine could likely determine whether that vaccine is effective in educating the body's immune system as to what diseases to look for.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: OHSU Slifka T-cell fluorescent virus-infected white blood cell

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>