Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers demonstrate how white blood cells cannibalize virus-infected cells

05.10.2006
Research helps explain how the human immune system works, possible new way to measure vaccine effectiveness

Researchers at the Vaccine and Gene Therapy Institute (VGTI) at Oregon Health & Science University have demonstrated how certain white blood cells literally eat virus-infected cells while fighting disease at the microscopic level. The research not only helps provide a clearer understanding of the body's immune system, it also offers hope of a new method for gauging vaccine effectiveness. The research is published in the current edition of the journal Nature Medicine.

CD8+ T-cells are specialized white blood cells that serve an important role in the body's immune system. The cells attack and destroy disease "invaders" such as viruses in the body. Previous studies indicated that T-cells may consume parts of cells with which they interact, but this new research shows this can happen in response to a systemic viral infection.

"If you use a fluorescent dye to stain infected cells, you can literally watch T-cells consume membranes and outer surfaces of diseased cells. As they destroy and cannibalize the fluorescently labeled cells, they become labeled with the fluorescent dye themselves," explained Mark Slifka, Ph.D., a researcher in the VGTI who led the research. Slifka is also a scientist in the Division of Pathobiology and Immunology at the Oregon National Primate Research Center and holds a concurrent appointment in the Department of Molecular Microbiology and Immunology in the OHSU School of Medicine.

"While we don't fully understand why this happens, one possibility is that the T-cell consumes virus-infected cells to fuel itself in the continued fight against an ongoing infection. It's sort of like invaders that pillage their defeated foe's supplies and then continue the fight."

The way in which Slifka and his colleague, Carol Beadling, made this discovery was quite serendipitous. The researchers were studying the interactions between virus-specific T-cells and fluorescently labeled infected cells when they noticed that the T-cells also began to glow with the fluorescent dye. Further investigation revealed that the CD8+ T-cells, often referred to as "killer" T-cells, were literally ingesting parts of the virus-infected cells that they were attacking.

Slifka and Beadling's findings follow a discovery by David Parker, Ph.D., a professor of Molecular Microbiology and Immunology in the OHSU School of Medicine. Parker and his colleague, Scott Wetzel, noted a similar behavior in CD4+ T-cells, often called "helper" T-cells, which are less aggressive T-cells but also an important aspect of the immune system.

"Another interesting finding for our lab is that in some ways, T-cells can be picky eaters," explained Slifka. "Although they will destroy almost any infected cell, they prefer to eat certain types of cells but not others. For instance, we noted that CD8+ T-cells consumed other white blood cells such as infected B-cells, but they were not fond of eating infected fibroblasts, a type of cell found in connective tissue. They're sort of like a 5-year-old who loves to eat cookies, but refuses to eat their brussels sprouts."

The researchers believe that these findings may be useful as a method for determining a vaccine's effectiveness during the process of immunization. Measuring the levels at which CD8+ T-cells respond to and consume a candidate vaccine could likely determine whether that vaccine is effective in educating the body's immune system as to what diseases to look for.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: OHSU Slifka T-cell fluorescent virus-infected white blood cell

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>