Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fantastic Voyage: a new nanoscale view of the biological world

Echoing the journey through the human body in Fantastic Voyage, doctors might soon be able to track individual donor cells after a transplant, or to find where and how much of a cancer treatment drug there is within a cell.

New technology described in a study published today in the open access journal Journal of Biology makes it possible to image and quantify molecules within individual mammalian or bacterial cells. Claude Lechene and colleagues describe the development of multi-isotope imaging mass spectrometry (MIMS), which has applications in all fields of biology and biomedical research.

“This method allows us to see what has never been seen before, and to measure what has never before been measured,” Lechene says. “Imagine looking into a building, slice by slice. You can see not only that it contains apartments, but also that each apartment contains a refrigerator. You can see that there are tomatoes in the refrigerator of one apartment, and potatoes in the refrigerator of another. You can count how many there are and measure how fast they are used and replaced. It is this level of resolution and quantification that MIMS makes possible within cells.”

Lechene, of Harvard Medical School and Brigham and Women’s Hospital in the US, worked with colleagues from around the world to develop and test the new methodology.

... more about:
»Biology »Ion »Lechene »MIMS »isotope »labelling

A beam of ions is used to bombard the surface atoms of the biological sample, and a fraction of the atoms are emitted and ionized. These “secondary ions” can then be manipulated with ion optics – in the way lenses and prisms manipulate visible light - to create an atomic mass image of the sample. Lechene et al. developed MIMS by combining the use of a novel secondary-ion mass spectrometer developed by Georges Slodzian, from the Université Paris-Sud in France, labeling with stable isotopes and building quantitative image-analysis software.

MIMS can generate quantitative, three-dimensional images of proteins, DNA, RNA, sugar and fatty acids at a subcellular level in tissue sections or cells. “Using MIMS, we can image and quantify the fate of these molecules when they go into cells, where they go, and how quickly they are replaced,” says Lechene.

The method does not need staining or use of radioactive labelling. Instead, it is possible to use stable isotopes to track molecules. For example, researchers could track stem cells by labelling DNA with 15N. “These stable isotopes do not alter the DNA and are not toxic to people; with MIMS and stable isotope labelling we could track these cells, where they are and how they have changed several years later,” says Lechene.

“The most significant feature of this technique is that it opens up a whole new world of imaging; we haven’t yet imagined all that we can do with it,” says Peter Gillespie from the Oregon Health and Science University in Portland, USA in an accompanying news article, also published today in Journal of Biology.

Lechene et al. describe how they developed MIMS, and illustrate some potential applications for biomedical research. For example, the article describes using MIMS to track donor spleen cells in the lymph nodes of a mouse, suggesting that MIMS may have applications in tracking stem cells and in understanding why some organ transplants are rejected. In another example MIMS was used to measure the capture of atmospheric nitrogen and its conversion to dietary nitrogen within single bacteria, a phenomenon essential to supporting life on earth.

The accompanying news article, published today in Journal of Biology, includes an interview with Lechene and garners views from researchers about the implications and applications of Lechene et al.’s article. Speaking with science writer Jonathan Weitzman, Brad Amos of the MRC Laboratory of Molecular Biology in Cambridge UK said “The labelling of the lymph node cells by 15N...suggests that MIMS may be highly useful in immunology and cancer research. This may turn out to be a key paper in the development of a really important imaging method.” Weitzman writes, ‘[Gillespie] agrees with Amos that the technology represents an imaging revolution. “The novelty of the technique means it will take some time for the details to be absorbed, [but it] sets a spectacular new standard for spatial resolution and detection of stable and radioactive compounds in cells.”

Grace Baynes | alfa
Further information:

Further reports about: Biology Ion Lechene MIMS isotope labelling

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>