Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fantastic Voyage: a new nanoscale view of the biological world

05.10.2006
Echoing the journey through the human body in Fantastic Voyage, doctors might soon be able to track individual donor cells after a transplant, or to find where and how much of a cancer treatment drug there is within a cell.

New technology described in a study published today in the open access journal Journal of Biology makes it possible to image and quantify molecules within individual mammalian or bacterial cells. Claude Lechene and colleagues describe the development of multi-isotope imaging mass spectrometry (MIMS), which has applications in all fields of biology and biomedical research.

“This method allows us to see what has never been seen before, and to measure what has never before been measured,” Lechene says. “Imagine looking into a building, slice by slice. You can see not only that it contains apartments, but also that each apartment contains a refrigerator. You can see that there are tomatoes in the refrigerator of one apartment, and potatoes in the refrigerator of another. You can count how many there are and measure how fast they are used and replaced. It is this level of resolution and quantification that MIMS makes possible within cells.”

Lechene, of Harvard Medical School and Brigham and Women’s Hospital in the US, worked with colleagues from around the world to develop and test the new methodology.

... more about:
»Biology »Ion »Lechene »MIMS »isotope »labelling

A beam of ions is used to bombard the surface atoms of the biological sample, and a fraction of the atoms are emitted and ionized. These “secondary ions” can then be manipulated with ion optics – in the way lenses and prisms manipulate visible light - to create an atomic mass image of the sample. Lechene et al. developed MIMS by combining the use of a novel secondary-ion mass spectrometer developed by Georges Slodzian, from the Université Paris-Sud in France, labeling with stable isotopes and building quantitative image-analysis software.

MIMS can generate quantitative, three-dimensional images of proteins, DNA, RNA, sugar and fatty acids at a subcellular level in tissue sections or cells. “Using MIMS, we can image and quantify the fate of these molecules when they go into cells, where they go, and how quickly they are replaced,” says Lechene.

The method does not need staining or use of radioactive labelling. Instead, it is possible to use stable isotopes to track molecules. For example, researchers could track stem cells by labelling DNA with 15N. “These stable isotopes do not alter the DNA and are not toxic to people; with MIMS and stable isotope labelling we could track these cells, where they are and how they have changed several years later,” says Lechene.

“The most significant feature of this technique is that it opens up a whole new world of imaging; we haven’t yet imagined all that we can do with it,” says Peter Gillespie from the Oregon Health and Science University in Portland, USA in an accompanying news article, also published today in Journal of Biology.

Lechene et al. describe how they developed MIMS, and illustrate some potential applications for biomedical research. For example, the article describes using MIMS to track donor spleen cells in the lymph nodes of a mouse, suggesting that MIMS may have applications in tracking stem cells and in understanding why some organ transplants are rejected. In another example MIMS was used to measure the capture of atmospheric nitrogen and its conversion to dietary nitrogen within single bacteria, a phenomenon essential to supporting life on earth.

The accompanying news article, published today in Journal of Biology, includes an interview with Lechene and garners views from researchers about the implications and applications of Lechene et al.’s article. Speaking with science writer Jonathan Weitzman, Brad Amos of the MRC Laboratory of Molecular Biology in Cambridge UK said “The labelling of the lymph node cells by 15N...suggests that MIMS may be highly useful in immunology and cancer research. This may turn out to be a key paper in the development of a really important imaging method.” Weitzman writes, ‘[Gillespie] agrees with Amos that the technology represents an imaging revolution. “The novelty of the technique means it will take some time for the details to be absorbed, [but it] sets a spectacular new standard for spatial resolution and detection of stable and radioactive compounds in cells.”

Grace Baynes | alfa
Further information:
http://www.biomedcentral.com

Further reports about: Biology Ion Lechene MIMS isotope labelling

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>