Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing of the oyster mushroom genome

04.10.2006
Professor of Microbiology at the Public University of Navarre, Antonio Gerardo Pisabarro de Lucas, is leading an international project to sequence the genome of the oyster mushroom.

The project research team is composed of scientists from nineteen universities and research centres from Europe, Canada, Japan, Israel and the United States.

The project, chosen from amongst more than 400 entered for the annual competition of the Joint Genome Institute (JGI) of the United States Department of Energy’s Science Office, is one of just over 40 which have the go-ahead, one of the seven coordinated by a European body and the only one led by a Spanish person.

The oyster mushroom, Pleurotus ostreatus, will be the first edible mushroom in the world to be genetically sequenced but, apart from its characteristics that make its consumption beneficial (rich in vitamins and proteins), this fungus is a model for studying the CO2 cycle – carbon dioxide being one of the principal gases of the greenhouse effect – and holds great potential for use in bioremediation –biodegradation of contaminants –, reasons why, together with other crops such as the yucca or cotton, it has been chosen for genome sequencing by the mentioned North American Genome Institute.

The oyster mushroom and CO2 balance

The oyster mushroom is actively involved in the re-circulation of carbon at a global level, in as much as this fungus is a lignin-degrading one, lignin being a component of wood of trees and other plants that form part of the second most important store of carbon in the Biosphere. The degradation of this compound is an essential step in the transformation of cellulose - the principal store for carbon – into biofuel.

Moreover, it has to be taken into account that lignin has a chemical composition that is not easy to break down – similar to some of the contaminant compounds that man releases into the environment, such as certain colorants or oils and by-products of the timber industry such as pulp and paper.

Thus, the study of the functioning of the oyster mushroom and of its strategies for adapting to its growth environment and for degrading lignin found in agricultural waste or decomposing wood in the natural environment, may be used for designing systems to enable the elimination of these contaminants from the environment.

The oyster mushroom is also a fungus the cultivation of which is widespread and so the study of its genetic organisation can give pointers to what is needed for many mushrooms not industrially grown in order for them to be produced as industrial crops, such as, for example, Boletus aereus.

More than 10 years of research

The Genetics and Microbiology Team at the Public University of Navarre, of which Professor Pisabarro belongs, has been working with the genetic material of the oyster mushroom since 1994.

Over this period, the Team has established the genetic bases that have made sequencing a viable project and they have managed to sequence about 350 thousand “letters” of the genome of this mushroom, corresponding to 1% of the total genome, a small part but a significant one for estimating the general parameters of the genome such as how many genes there are or how they are organised.

The complete genome for the oyster mushroom has 70 million “letters” or bases, distributed throughout two equivalent copies, given that this fungus has a double copy of each chromosome – as humans do. However, the project of sequencing the complete genome involves the handling of a volume of 280 million letters, given the fact that each one of the two sets of genes has to be read several times in order to ensure a good result. It is like a complicated text that demands an assurance that there are no errors in what has been read.

To understand what this really involves, Pisabarro gives us an example: 70 million letters would be equivalent to a volume of more than 11,500 pages of text. If the pages are normal, folio size and are placed side by side, they would run for a distance of 3.5 kilometres; the letters thereof, written and placed one after the other, would run to 141 km. The genome of the mushroom has twin sets of the genes and, thereby, each set has about 6,000 “pages” on which we estimate there are some 12,000 genes - approximately two genes per page. Thus, the real task now is to determine where each of these genes starts and finishes, what they do and how they do it.

Order 70 million letters

With the selection of the project by the Genomics Institute, it will be this United States-based body that will be responsible for carrying out the sequencing work and computer analysis.

At the Public University of Navarre laboratories the DNA of the oyster mushroom will be isolated and purified and then sent to the Genomics Institute for sequencing. Within one year, approximately, the JGI will have undertaken a first reading of the genome’s 70 million letters. And, once again, it will be laboratories at the Public University of Navarre that will order the sequenced fragments and co-ordinate the rest of the project tasks.

From the Navarre university, the resulting computer archive of the sequencing, containing the definitive “pages of letters” for the genetic code, will be then distributed to the other participating laboratories in order to carry out the annotation of the genome sequence – involving the identification of each one of the genes that make up the oyster mushroom, i.e. the genetic constitution of the organism.

Life appeared on Earth some 3,000 million years ago. The evolution undergone by this fungus whose DNA is to be purified, has been through these 3,000 million years, as has the human being. Thus, within its genome there is 3,000 million years of history – the goal of the sequencing of this genome is to unlock and read this history of the organism, so that we might understand its biology and reproduction and enhance its utilization.

Moreover, an understanding of the evolutionary history registered in the genome of the oyster mushroom and its comparison with other histories registered in other genomes that have been – or are currently being – sequenced (human, animal, vegetable and microbian), enables us to obtain an overall and more enriched picture of the evolution of life on Earth.

In the second year of the project, the reading of the genome will be completed and the annotation of the genes perfected. In the end, all the information will be placed at the disposal of the scientific community free of charge.

Participating bodies

Concretely, the universities and institutions taking part in the project are the following: from Spain, apart from the Public University of Navarre, the universities of Seville, Salamanca and Leon are collaborating, as well as the CSIC Centre; from the United States, the University of Wisconsin, Southeast Missouri State University, the universities of Michigan, Texas, Duke and Indiana; from Germany, the universities of Georg-August in Gotinga, Munster and Hannover. Also participating are the universities of Toronto (Canada), Vienna (Austria), Hebrea in Jerusalem (Israel), Federico II of Naples (Italy) and Kyushu (Japan).

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1046

Further reports about: Carbon Environment Genetic Genom Navarre Sequencing contaminant fungus

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>