Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


55,000 tiny Thomas Jeffersons show power of new method

Ever since the invention of the first scanning probe microscope in 1981, researchers have believed the powerful tool would someday be used for the nanofabrication and nanopatterning of surfaces in a molecule-by-molecule, bottom-up fashion. Despite 25 years of research in this area, the world has hit a brick wall in developing a technique with commercial potential -- until now.

Northwestern University researchers have developed a 55,000-pen, two-dimensional array that allows them to simultaneously create 55,000 identical patterns drawn with tiny dots of molecular ink on substrates of gold or glass. Each structure is only a single molecule tall.

This advance of a patterning method called Dip-Pen Nanolithography (DPN), which was invented at Northwestern in 1999, was published online Monday (Sept. 25) by the journal Angewandte Chemie.

To demonstrate the technique's power, the researchers reproduced the face of Thomas Jefferson from a five-cent coin 55,000 times, which took only 30 minutes. Each identical nickel image is 12 micrometers wide -- about twice the diameter of a red blood cell -- and is made up of 8,773 dots, each 80 nanometers in diameter.

... more about:
»DPN »method

The parallel process paves the way for making DPN competitive with other optical and stamping lithographic methods used for patterning large areas on metal and semiconductor substrates, including silicon wafers. The advantage of DPN, which is a maskless lithography, is that it can be used to deliver many different types of inks simultaneously to a surface in any configuration one desires. Mask-based lithographies and stamping protocols are extremely limited in this regard.

"This development should lead to massively miniaturized gene chips, combinatorial libraries for screening pharmaceutically active materials and new ways of fabricating and integrating nanoscale or even molecular-scale components for electronics and computers," said Chad A. Mirkin, director of Northwestern's International Institute for Nanotechnology and George B. Rathmann Professor of Chemistry, who led the research.

"In addition, it could lead to new ways of studying biological systems at the single particle level, which is important for understanding how cancer cells and viruses work and for getting them to stop what they do," he said. "Essentially one can build an entire gene or protein chip that fits underneath a single cell."

Megan Fellman | EurekAlert!
Further information:

Further reports about: DPN method

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>