Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how herpes infects cornea, evades immune cells

26.09.2006
Herpes virus has an unusual strategy for infecting cornea cells that may also explain how it evades the immune system, according to a study by researchers at the University of Illinois at Chicago College of Medicine.

The study appears in the Sept. 25 issue of the Journal of Cell Biology.

Both strains of the herpes virus -- HSV-1, the strain that causes cold sores on the mouth, and HSV-2, genital herpes -- can infect the cornea, the clear, domed surface that forms the eye's outermost layer. Ocular herpes is the leading cause of infectious blindness in the United States, with 50,000 new or recurring cases each year.

In about one quarter of cases, the virus penetrates the first layer of the cornea to infect an inner layer, the stroma, making the disease much more difficult to treat.

... more about:
»Cornea »Herpes »SAC »Shukla »infect »stroma

Effective treatment is hampered by poor understanding of how the virus infects the stroma, says Deepak Shukla, assistant professor of ophthalmology and visual science and microbiology and immunology, and senior author of the paper. In their study, he and his coworkers determined that the HSV-1 virus enters stroma cells in a process similar to the way bacteria, viruses and other foreign invaders are engulfed by immune cells called phagocytes.

"In the electron microscope pictures, it looks like the stroma cells form long arms that reach out and collect the virus particles, and then wrap around them, forming a sac, and bring them into the cell body," Shukla said.

In phagocytes, ingested foreign particles are destroyed in the sacs, which are highly acidic. But even though the sacs formed by the stroma cells were similar to the phagocyte's sacs, Shukla said, the envelope containing the herpes virus genome emerges from the sac undamaged and able to infect the cell. "This raises the interesting possibility that herpes may be able to evade the immune system defenses in the same way," he said.

"Understanding herpes' unusual pathway for infecting the stroma cells opens up new strategies for developing therapies against this potentially blinding disease and has implications for understanding other herpes virus infections," Shukla said.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Cornea Herpes SAC Shukla infect stroma

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>