Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how herpes infects cornea, evades immune cells

26.09.2006
Herpes virus has an unusual strategy for infecting cornea cells that may also explain how it evades the immune system, according to a study by researchers at the University of Illinois at Chicago College of Medicine.

The study appears in the Sept. 25 issue of the Journal of Cell Biology.

Both strains of the herpes virus -- HSV-1, the strain that causes cold sores on the mouth, and HSV-2, genital herpes -- can infect the cornea, the clear, domed surface that forms the eye's outermost layer. Ocular herpes is the leading cause of infectious blindness in the United States, with 50,000 new or recurring cases each year.

In about one quarter of cases, the virus penetrates the first layer of the cornea to infect an inner layer, the stroma, making the disease much more difficult to treat.

... more about:
»Cornea »Herpes »SAC »Shukla »infect »stroma

Effective treatment is hampered by poor understanding of how the virus infects the stroma, says Deepak Shukla, assistant professor of ophthalmology and visual science and microbiology and immunology, and senior author of the paper. In their study, he and his coworkers determined that the HSV-1 virus enters stroma cells in a process similar to the way bacteria, viruses and other foreign invaders are engulfed by immune cells called phagocytes.

"In the electron microscope pictures, it looks like the stroma cells form long arms that reach out and collect the virus particles, and then wrap around them, forming a sac, and bring them into the cell body," Shukla said.

In phagocytes, ingested foreign particles are destroyed in the sacs, which are highly acidic. But even though the sacs formed by the stroma cells were similar to the phagocyte's sacs, Shukla said, the envelope containing the herpes virus genome emerges from the sac undamaged and able to infect the cell. "This raises the interesting possibility that herpes may be able to evade the immune system defenses in the same way," he said.

"Understanding herpes' unusual pathway for infecting the stroma cells opens up new strategies for developing therapies against this potentially blinding disease and has implications for understanding other herpes virus infections," Shukla said.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Cornea Herpes SAC Shukla infect stroma

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>