Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover “Killer” B Cells; New Link in the Evolution of Immunity

25.09.2006
Researchers from the University of Pennsylvania School of Veterinary Medicine have discovered a unique evolutionary link between the immune systems of fish and mammals in the form of a primitive version of B cells, white blood cells of the immune system.

Their studies link the evolution of the adaptive immune system in mammals, where B cells produce antibodies to fight infection, to the more primitive innate immunity in fish, where they found that B cells take part in phagocytosis (literally: cell eating), the process by which cells of the immune system ingest foreign particles and microbes.

The finding, which appears in the online version of Nature Immunology and will be featured on the cover of the October issue, represents a sizeable evolutionary step for the mammalian immune system and offers a potential new strategy for developing much-needed fish vaccines.

"When examining fish B cells we see them actively attacking and eating foreign bodies, which is a behavior that, according to the current dogma, just shouldn't happen in B cells," said J. Oriol Sunyer, a professor in Penn Vet's Department of Pathobiology. "I believe it is evidence for a very real connection between the most primitive forms of immunological defense, which has survived in fish, and the more advanced, adaptive immune response seen in humans and other mammals."

About 400 million years ago, the earliest ancestors of modern fish split off of the evolutionary pathway that became the earliest ancestors of modern mammals. In modern mammals, the B cell is a highly adapted part of the immune system chiefly responsible for, among other things, the creation of antibodies that tag foreign particles and microbes for destruction. Mammals have phagocytic cells, but they are a specialized few cells identified apart from the complex interactions that drive other white blood cells.

Sunyer and his colleagues discovered this previously unsuspected B cell activity while examining the immune cells of rainbow trout and catfish. The researchers determined that these attack B cells account for more than 30-40% of all immune cells in fish, while phagocytic cells only make up a small portion of the total number of immune cells in mammals. Further research also showed that a significant portion of amphibian B cells retained their digestive traits.

"The immune systems of amphibians and fish are far less advanced than ours," Sunyer said. "When you only have a rudimentary adaptive immune system, it helps to have more phagocytic cells to compensate, which is what has served fish so well over the last 400 million years."

In the past, research on the immune systems of more primitive species has paved the way to the discovery of new molecules and pathways that are critical to the immune response in humans and other mammals. B cells themselves, for example, were first discovered in chickens in the 1960s. According to Sunyer, the Penn findings are not only important for understanding the evolution and function of immune cells in fish but also may point out to novel roles of B cells in mammals.

At this point, we cannot rule out the possibility that small subpopulations of phagocytic B cells, perhaps remnants of those present in fish, are still present in mammals, Sunyer said.

Their findings also have an agricultural implication. The current vaccines given to farmed salmon, for example, appeal to the fish's adaptive immune response, which this research has now shown to be a smaller part of the overall fish immune system than previously thought.

"If we work to create vaccines that encourage phagocytic B cell to respond to infection, then we would play to the strengths of fish immunity," Sunyer said. "In the long term, farming is a better, more environmentally sound approach to fishing, so better vaccines may make the practice more financially attractive to fisherman and less destructive to fish populations."

There is little doubt that, despite the behavioral differences, the fish B cells represent a less advanced version of mammalian B cells. Sunyer found the very cellular structures that medical science has used to define B cells in humans to be present in fish B cells, which is why they are able to label them as B cells in the first place.

"Here we have a clear picture of where one part of the immune system, primitive phagocytes, adapted over time to serve a more complex role as part of the immune system that humans enjoy today, Sunyer said. There is still much we can learn about our own health through the ongoing study of immune system evolution among all organisms.

Funding for this research was provided by the National Science Foundation and United States Department of Agriculture.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: B cells Sunyer immune cell immune system mammals phagocytic primitive vaccines

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>