Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A wolf in sheep’s clothing: plague bacteria reveal one of their virulence tricks

21.09.2006
The bacterium that causes the plague belongs to a virulent family of bacteria called Yersinia, a group that also includes a pathogen responsible for food poisoning.

These bacteria insert into their host cells proteins and other virulence factors, which kill by — among other things — disrupting the cells' normal structure. One of these proteins, called YpkA, attacks a cell’s internal skeleton. Now, a study published by Rockefeller University researchers in the most recent issue of Cell shows exactly how YpkA does this, proving the protein’s mechanism from the atomic to the organismal level and providing a potential target for new antibiotic drugs.

C. Erec Stebbins, associate professor and head of the Laboratory of Structural Microbiology, and graduate student Gerd Prehna solved the structure for one region of the YpkA protein, a “binding domain” where it interlocks with another protein on the host cell’s membrane. By looking at the crystal structure of this protein-protein complex, Prehna discovered that the configuration looked just like one formed by some of the host’s own signaling proteins. And it’s this mimicry, he found, that leads to a signaling shutdown and deregulation of the cell’s normal structure.

After establishing this effect, Prehna set about disrupting it by mutation. Using the structure to guide him, he changed three amino acids of YpkA that contacted host proteins, and then looked at how the mutated bacteria affected human cells compared to the original wild-type Yersinia. His results confirmed the hypothesis from the structural study: While the wild-type YpkA wreaked havoc on their host cells’ cytoskeletons, the mutant left the actin-based skeleton intact.

... more about:
»Prehna »Yersinia »YpkA »virulence »wild-type

Then, the researchers took it one step further. Stebbins and Prehna worked with collaborators at Stony Brook University, who created Yersinia bacteria with Prehna’s mutations. The Stony Brook researchers then injected mice with the wild-type and mutant strains of Yersinia. All the mice infected with the wild-type bacteria died within nine days of exposure. But the group that received the YpkA mutant had an 80 percent survival rate, showing that Prehna’s mutation drastically lowered Yersinia’s harmful effects. “Altering this binding site not only impairs the bacteria’s ability to disrupt the host cytoskeleton,” Stebbins says, “but it decreases its virulence significantly.”

“It’s rare to find something that has such a strong effect that you can hit one protein so specifically, knock out essentially half its activity, and have such a dramatic result,” he says. “Not only did we have a mechanistic explanation, but we could connect what we were seeing in animal studies all the way down to what was happening at the atomic level.”

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Prehna Yersinia YpkA virulence wild-type

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>