Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCI scientists discover a new healthy role for fat

Fat droplets play protective role inside cells

Too much body fat may be a bad thing, but there is increasing evidence that too little fat also may have some surprisingly negative consequences.

Researchers at UC Irvine have found that fat droplets – tiny balls of fat that exist in most cells – appear to have an intriguing role to play when it comes to regulating excess proteins in the body. In a study with fruit flies, developmental biologist Steven Gross and colleagues found that these fat droplets served as storage depots for a type of protein used primarily by the cell to bind DNA and organize it in the nucleus. The fat keeps this extra protein out of the way until it is needed so that it does not cause harm within the cell. The findings imply that fat droplets could also serve as storage warehouses for other excess proteins that might otherwise cause harm if not sequestered. The study appears in the current issue of Current Biology.

“We were surprised to find that these droplets appear to be a mechanism for cleaning up excess proteins before they cause trouble,” said Gross, associate professor of developmental and cell biology. “Obviously, everything in the body should be balanced. There is no doubt that huge amounts of fat tax your system in a lot of ways. But there now appears to be growing evidence that fat is also important for keeping us healthy.”

... more about:
»HDL-cholesterol »Nucleus »UCI »droplets »histones

Researchers used fruit flies in their experiments because of strong similarities between the fat droplets in the flies and in mammals. They purified the droplets in fruit fly embryos and used mass spectrometry to look at what, if any, proteins were associated with the droplets. They were surprised to find histones, a protein that is used by the cell to fold DNA within the nucleus. Even though histones appear to serve no purpose outside the nucleus, the scientists found that 50 percent of all the histones present in the cell were in the fat droplets. Interestingly, the amount of histones in the droplets dropped as the embryo moved from early development to later stages, indicating that the histones moved from the droplets to the nucleus as they were needed. In essence, the fat droplets acted as a warehouse where the proteins could be stored until needed by the nucleus of the cell.

Gross and his colleagues believe the droplets serve this purpose not just for histones, but for other excess proteins, as well. This has implications for how fat may be helping fight certain diseases when too much of certain proteins are produced.

“In prion diseases, such as Mad Cow Disease, for example, proteins in the brain are misshapen,” Gross said. “They become abnormal, clump together and accumulate on brain tissue. Although we have no evidence yet that fat droplets could help with this, prion diseases are one area in which we can explore further to see if these droplets are helping keep excess bothersome proteins out of the way.”

Gross emphasized that clinical trials would be needed to evaluate whether storage of proteins on fat droplets is important for human health.

Collaborating on the study with Gross were Silvia Cermelli of UCI, and Michael Welte and Yi Guo of Brandeis University. The study was funded by National Institute of General Medical Sciences and the National Institutes of Health.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Farnaz Khadem | EurekAlert!
Further information:

Further reports about: HDL-cholesterol Nucleus UCI droplets histones

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>