Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT finds most complex protein knot ever seen

21.09.2006
An MIT team has discovered the most complicated knot ever seen in a protein, and they believe it may be linked to the protein's function as a rescue agent for proteins marked for destruction.

"In proteins, the three-dimensional structure is very important to the function, and this is just one example," said Peter Virnau, a postdoctoral fellow in physics and an author of a paper on the work that appears in the Sept. 15 issue of the Public Library of Science, Computational Biology.

Knots are rare in proteins - less than 1 percent of all proteins have any knots, and most are fairly simple. The researchers analyzed 32,853 proteins, using a computational technique never before applied to proteins at this scale.

Of those that had knots, all were enzymes. Most had a simple three-crossing, or trefoil knot, a few had four crossings, and the most complicated, a five-crossing knot, was initially found in only one protein - ubiquitin hydrolase.

... more about:
»Complex »Ubiquitin »hydrolase »knot

That complex knot may hold some protective value for ubiquitin hydrolase, whose function is to rescue other proteins from being destroyed - a dangerous job.

When a protein in a cell needs to be destroyed, it gets labeled with another protein called ubiquitin. "It's a death mark for the protein," said Leonid Mirny, an author of the paper and an associate professor in the MIT-Harvard Division of Health Sciences and Technology.

Once the "death mark" is applied, proteins are shuttled to a cell structure called a proteasome, which pulls the protein in and chops it into pieces. However, if ubiquitin hydrolase intervenes and removes the ubiquitin, the protein is saved.

The complicated knot found in ubiquitin hydrolase may prevent it from getting sucked into the proteasome as it works, Mirny said. The researchers hypothesize that proteins with complex knots can't be pulled into the proteasome as easily, and the knots may make it harder for the protein to unfold, which is necessary for degradation.

The same knot is found in ubiquitin hydrolase in humans and in yeast, supporting the theory that there is a connection between the knot and the protein's function. This also seems to suggest that the knot has been "highly preserved throughout evolution," Virnau said.

Until now, scientists have not paid much attention to knots in proteins, but the MIT researchers hope their work will ignite further interest in the subject. "We just hope this will become a part of the routine crystallographers and NMR spectroscopists do when they solve a structure," Mirny said.

Virnau is working on a computer program and a web server, soon to be publicly available, that can analyze the structure of any protein to see if it has knots, which he believes could be helpful to researchers in structural genomics. (Structural genomics aims to determine the structure of all proteins produced by a given organism.)

Since their initial screening, the researchers have discovered five-crossing knots in two other proteins - a brain protein whose overexpression and mutations are linked with cancer and Parkinson's disease, and a protein involved in the HIV replication cycle.

They have also found examples of proteins that are closely related and structurally similar except for the presence or absence of a knot. Two versions of the enzyme transcarbamylase, from humans and certain bacteria, catalyze different reactions, depending on whether or not there is a knot. The researchers speculate that somewhere along the evolutionary line, the sequence that allowed a protein to form the knot was added or deleted.

The third author on the paper is Mehran Kardar, an MIT physics professor. The research was funded by the National Science Foundation and the German Research Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Complex Ubiquitin hydrolase knot

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>