Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT finds most complex protein knot ever seen

21.09.2006
An MIT team has discovered the most complicated knot ever seen in a protein, and they believe it may be linked to the protein's function as a rescue agent for proteins marked for destruction.

"In proteins, the three-dimensional structure is very important to the function, and this is just one example," said Peter Virnau, a postdoctoral fellow in physics and an author of a paper on the work that appears in the Sept. 15 issue of the Public Library of Science, Computational Biology.

Knots are rare in proteins - less than 1 percent of all proteins have any knots, and most are fairly simple. The researchers analyzed 32,853 proteins, using a computational technique never before applied to proteins at this scale.

Of those that had knots, all were enzymes. Most had a simple three-crossing, or trefoil knot, a few had four crossings, and the most complicated, a five-crossing knot, was initially found in only one protein - ubiquitin hydrolase.

... more about:
»Complex »Ubiquitin »hydrolase »knot

That complex knot may hold some protective value for ubiquitin hydrolase, whose function is to rescue other proteins from being destroyed - a dangerous job.

When a protein in a cell needs to be destroyed, it gets labeled with another protein called ubiquitin. "It's a death mark for the protein," said Leonid Mirny, an author of the paper and an associate professor in the MIT-Harvard Division of Health Sciences and Technology.

Once the "death mark" is applied, proteins are shuttled to a cell structure called a proteasome, which pulls the protein in and chops it into pieces. However, if ubiquitin hydrolase intervenes and removes the ubiquitin, the protein is saved.

The complicated knot found in ubiquitin hydrolase may prevent it from getting sucked into the proteasome as it works, Mirny said. The researchers hypothesize that proteins with complex knots can't be pulled into the proteasome as easily, and the knots may make it harder for the protein to unfold, which is necessary for degradation.

The same knot is found in ubiquitin hydrolase in humans and in yeast, supporting the theory that there is a connection between the knot and the protein's function. This also seems to suggest that the knot has been "highly preserved throughout evolution," Virnau said.

Until now, scientists have not paid much attention to knots in proteins, but the MIT researchers hope their work will ignite further interest in the subject. "We just hope this will become a part of the routine crystallographers and NMR spectroscopists do when they solve a structure," Mirny said.

Virnau is working on a computer program and a web server, soon to be publicly available, that can analyze the structure of any protein to see if it has knots, which he believes could be helpful to researchers in structural genomics. (Structural genomics aims to determine the structure of all proteins produced by a given organism.)

Since their initial screening, the researchers have discovered five-crossing knots in two other proteins - a brain protein whose overexpression and mutations are linked with cancer and Parkinson's disease, and a protein involved in the HIV replication cycle.

They have also found examples of proteins that are closely related and structurally similar except for the presence or absence of a knot. Two versions of the enzyme transcarbamylase, from humans and certain bacteria, catalyze different reactions, depending on whether or not there is a knot. The researchers speculate that somewhere along the evolutionary line, the sequence that allowed a protein to form the knot was added or deleted.

The third author on the paper is Mehran Kardar, an MIT physics professor. The research was funded by the National Science Foundation and the German Research Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Complex Ubiquitin hydrolase knot

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>