Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain's action center is all talk

20.09.2006
Collaboration between USC, UCLA, UC Berkeley and Italian University finds strong mental link between actions and words

Neuroscience is tackling a problem that obsessed Hamlet: What is the difference in our minds between talk and action?

Less than you would expect, an international research group reports in the Sept. 19 issue of Current Biology.

The brain's premotor cortex shows the same activity pattern when subjects observe an action as when they hear words describing the same action, the study's authors said.

... more about:
»Aziz-Zadeh »Cortex »premotor

"If you hear the word 'grasp,' it's actually the premotor cortex that's active, not just a separate, abstract semantic area in the brain," said lead investigator Lisa Aziz-Zadeh, assistant professor of occupational sciences with a joint appointment in the Brain and Creativity Institute of the USC College of Letters, Arts and Sciences.

The premotor cortex has long been identified as a center of activity for actions. The notion that it could also process verbal descriptions of those actions has met some resistance.

"Neuroscience is coming around to this idea, but there hasn't been much data supporting it," Aziz-Zadeh said.

To change that, Aziz-Zadeh recruited 12 volunteers and used functional magnetic resonance imaging (fMRI) to compare the same areas of the premotor cortex in the same subject as the person observed an action and heard language describing the action.

The premotor area involved during observation of a specific action, such as kicking, also lit up when the subject heard the corresponding word. This was the first study to make such a direct comparison, Aziz-Zadeh said.

Other studies found activity in the same areas during execution of an action, Aziz-Zadeh added, offering indirect evidence for the existence of "mirror neuron" systems that activate both when a person performs a task and when the person watches someone else perform the task.

"The study does demonstrate the intimate linkage between the way we talk about actions and the neural machinery that supports those actions. That's very intriguing," said USC University Professor Michael Arbib.

Arbib also noted the sharp difference between the subjects' responses to literal action statements (such as "biting the peach") and metaphorical actions ("biting off more than you can chew" or "kicking off").

"Metaphor seems not to activate the action areas as much as a direct action statement," he said, predicting that in future studies the premotor cortex will respond more strongly to novel images than to "frozen metaphors," otherwise known as clichés – a finding unlikely to floor anyone, knock their socks off or cause their jaw to drop.

Arbib carried out one of the first studies of mirror neurons in humans with Giacomo Rizzolatti of the Universita di Parma in Italy.

In 1998, he and Rizzolatti co-wrote "Language Within Our Grasp," a frequently cited article that proposed mirror neurons are involved in language. (Arbib also edited "From Action to Language Via the Mirror System," an upcoming book from Cambridge University Press.)

Rizzolatti, who discovered mirror neurons in 1996, collaborated with Aziz-Zadeh on her current study. The other co-authors are Stephen Wilson and Marco Iacoboni from UCLA.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Aziz-Zadeh Cortex premotor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>