Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain's action center is all talk

20.09.2006
Collaboration between USC, UCLA, UC Berkeley and Italian University finds strong mental link between actions and words

Neuroscience is tackling a problem that obsessed Hamlet: What is the difference in our minds between talk and action?

Less than you would expect, an international research group reports in the Sept. 19 issue of Current Biology.

The brain's premotor cortex shows the same activity pattern when subjects observe an action as when they hear words describing the same action, the study's authors said.

... more about:
»Aziz-Zadeh »Cortex »premotor

"If you hear the word 'grasp,' it's actually the premotor cortex that's active, not just a separate, abstract semantic area in the brain," said lead investigator Lisa Aziz-Zadeh, assistant professor of occupational sciences with a joint appointment in the Brain and Creativity Institute of the USC College of Letters, Arts and Sciences.

The premotor cortex has long been identified as a center of activity for actions. The notion that it could also process verbal descriptions of those actions has met some resistance.

"Neuroscience is coming around to this idea, but there hasn't been much data supporting it," Aziz-Zadeh said.

To change that, Aziz-Zadeh recruited 12 volunteers and used functional magnetic resonance imaging (fMRI) to compare the same areas of the premotor cortex in the same subject as the person observed an action and heard language describing the action.

The premotor area involved during observation of a specific action, such as kicking, also lit up when the subject heard the corresponding word. This was the first study to make such a direct comparison, Aziz-Zadeh said.

Other studies found activity in the same areas during execution of an action, Aziz-Zadeh added, offering indirect evidence for the existence of "mirror neuron" systems that activate both when a person performs a task and when the person watches someone else perform the task.

"The study does demonstrate the intimate linkage between the way we talk about actions and the neural machinery that supports those actions. That's very intriguing," said USC University Professor Michael Arbib.

Arbib also noted the sharp difference between the subjects' responses to literal action statements (such as "biting the peach") and metaphorical actions ("biting off more than you can chew" or "kicking off").

"Metaphor seems not to activate the action areas as much as a direct action statement," he said, predicting that in future studies the premotor cortex will respond more strongly to novel images than to "frozen metaphors," otherwise known as clichés – a finding unlikely to floor anyone, knock their socks off or cause their jaw to drop.

Arbib carried out one of the first studies of mirror neurons in humans with Giacomo Rizzolatti of the Universita di Parma in Italy.

In 1998, he and Rizzolatti co-wrote "Language Within Our Grasp," a frequently cited article that proposed mirror neurons are involved in language. (Arbib also edited "From Action to Language Via the Mirror System," an upcoming book from Cambridge University Press.)

Rizzolatti, who discovered mirror neurons in 1996, collaborated with Aziz-Zadeh on her current study. The other co-authors are Stephen Wilson and Marco Iacoboni from UCLA.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Aziz-Zadeh Cortex premotor

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>