Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bitter taste identifies poisons in foods

Scientists at the Monell Chemical Senses Center report that bitter taste perception of vegetables is influenced by an interaction between variants of taste genes and the presence of naturally-occurring toxins in a given vegetable. The study appears in the September 19 issue of Current Biology.

Scientists have long assumed that bitter taste evolved as a defense mechanism to detect potentially harmful toxins in plants. The Current Biology paper provides the first direct evidence in support of this hypothesis by establishing that variants of the bitter taste receptor TAS2R38 can detect glucosinolates, a class of compounds with potentially harmful physiological actions, in natural foods.

"The findings show that our taste receptors are capable of detecting toxins in the natural setting of the fruit and vegetable plant matrix," said senior author Paul Breslin, a Monell sensory scientist.

Glucosinolates act as anti-thyroid compounds. The thyroid converts iodine into thyroid hormones, which are essential for protein synthesis and regulation of the body's metabolism. Glucosinolates inhibit iodine uptake by the thyroid, increasing risk for goiter and altering levels of thyroid hormones. The ability to detect and avoid naturally-occurring glucosinolates would confer a selective advantage to the over 1 billion people who presently have low iodine status and are at risk for thyroid insufficiency.

In the study, 35 healthy adults were genotyped for the hTAS2R38 bitter taste receptor gene; the three genotypes were PAV/PAV (sensitive to the bitter-tasting chemical PTC,) AVI/AVI (insensitive), and PAV/AVI (intermediate).

... more about:
»Glucosinolate »Thyroid »receptor »toxins

Subjects then rated bitterness of various vegetables; some contained glucosinolates while others did not. Examples of the 17 glucosinolate-containing vegetables include watercress, broccoli, bok choy, kale, kohlrabi, and turnip; the 11 non-glucosinolate foods included radicchio, endive, eggplant and spinach. Subjects with the sensitive PAV/PAV form of the receptor rated the glucosinolate-containing vegetables as 60% more bitter than did subjects with the insensitive (AVI/AVI) form. The other vegetables were rated equally bitter by the two groups, demonstrating that variations in the hTAS2R38 gene affect bitter perception specifically of foods containing glucosinolate toxins.

Together, the findings provide a complete picture describing individual differences in responses to actual foods at multiple levels: evolutionary, genetic, receptor, and perceptual. "The sense of taste enables us to detect bitter toxins within foods, and genetically-based differences in our bitter taste receptors affect how we each perceive foods containing a particular set of toxins," summarizes Breslin.

Breslin notes, "The contents of the veggies are a double-edged sword, depending upon the physiological context of the individual eating them. Most people in industrialized cultures can and should enjoy these foods. In addition to providing essential nutrients and vitamins, many are reported to have anti-cancer properties."

Lead author Mari Sandell comments on additional nutritional and practical implications of the study, "Taste has a great impact on food acceptability and choice. A comprehensive understanding how food components contribute to taste is necessary to develop modern tools for both nutritional counseling and food development."

Paul Breslin | EurekAlert!
Further information:

Further reports about: Glucosinolate Thyroid receptor toxins

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>