Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uniform Tungsten Trimers Stand and Deliver

19.09.2006
Research provides fundamental insights into catalyst structure and behavior

Like tiny nano-soldiers on parade, the cyclic tungsten trioxide clusters line up molecule-by-molecule on the titanium dioxide platform. One tungsten atom from each cluster is raised slightly, holding forth the potential to execute catalytic reactions.

The nanostructures constitute a new model system, a simplified version of a catalyst that would be used in an application. Such models reveal to chemists the exact structure and reaction mechanisms of metal oxides.

Developed by researchers from the Department of Energy’s Pacific Northwest National Laboratory, the University of Texas-Austin and Washington State University, the discovery may offer a platform for fundamental reactivity studies of metal oxides used as catalysts in converting hydrocarbons into fuels and value-added chemicals.

... more about:
»Atom »Oxide »catalyst »tungsten

“There is a striking difference between commercial catalysts and the new model system,” said Mike White, the UT professor leading the PNNL Institute for Interfacial Catalysis. Variability in commercial catalyst size and chemical composition makes it difficult to accurately understand or describe the reactions taking place at a molecular level.

“Commercial catalysts are like a gravel pile with many sizes of rocks. Some rocks are purple; some are blue. Some do one thing; some do another. But, our system has all the same size rocks,” White said.

The model system – in which all the molecular clusters are the same size, are evenly dispersed and are oriented in one of two directions on a single layer of titanium oxide crystals – holds promise as a platform for studying the behavior of early transition metal oxides. White noted, “While we have created the smallest nano-cluster of a uniform size you can imagine, it is a real oxide. The tungsten is in its normal oxide state. In principle, you have all the things needed to make bonds and break bonds. That’s the scientific breakthrough here.”

Though it appears simple, the model system was challenging to develop, White said. The collaborators employed specialized equipment available from the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE user facility located at PNNL, to prepare and characterize the platform as well as the clusters. Using a unique approach that changed the tungsten oxide directly from a solid to a gas, the collaborators stabilized the molecular rings – or “trimers” – of tungsten on the titanium platform.

A scanning tunneling microscope imaged not only the trimers but also their consistent alignment with the single crystal structure of the platform. “A scanning tunneling microscope must be so stable that we have to vibrationally isolate the instrument. It cannot move even a small amount because we are using a stream of electrons to measure the distance from the microscope’s tip to a small space between atoms,” White explained. The collaborators also characterized the cluster mass, determined the ratio of tungsten to oxygen atoms in the cluster, and used X-ray photoelectron spectroscopy to identify the tungsten oxidation state.

“This is a small piece of the basic science that could lead to control of chemical transformations for our energy future,” White said, noting that this is the first time researchers have created and imaged monodisperse oxide clusters on another oxide.

Work to develop the model system is part of the Early Transition Metals as Catalysts project at PNNL and was supported by the U.S. Department of Energy’s Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. Results were published in the July 17, 2006 issue of Angewandte Chemie International Edition.

Judith Graybeal | EurekAlert!
Further information:
http://www.pnl.gov

Further reports about: Atom Oxide catalyst tungsten

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>