Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poplar DNA code cracked - new possibilities for sustainable energy

15.09.2006
Sustainable or renewable energy - in the form of bio-ethanol, for example - can be produced for us by trees.

The influence trees have on our daily life is enormous. Forests cover 30% of the world’s land area, accommodate two thirds of life on earth, and are responsible for 90% of the biomass on solid ground.

Now, an international consortium, which includes researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University, has succeeded in unraveling the first tree genome - that of the poplar. Moreover, their research indicates that the poplar has about 45,000 genes. This knowledge is a first step toward being able to make trees grow faster or make them easier to process into paper or energy.

The research results are being published this week in the authoritative journal Science.

... more about:
»Arabidopsis »Bio-Ethanol »DNA

Trees are jacks-of-all-trades

It’s difficult to overestimate the importance of trees as providers of clean air as well as raw material for bio-energy, paper, furniture and other useful objects. A lot of the properties that trees possess are not found in other plants, like their abilities to produce large quantities of wood, to synchronize their growth with the seasons, and to adapt to changing environmental conditions. They need these properties because they must be able to survive for many years in the same place.

Poplars cover more than 75 million hectares worldwide, nearly 7 million of which are cultivated for timber production on the one hand (about 4 million hectares) and for environmental purposes on the other hand (about 3 million hectares).

It’s in the genes...

Because the size of its genome is relatively limited, the poplar serves as a model organism for trees. Populus trichocarpa (or black cottonwood, the largest American poplar) has ‘only’ 485 million base pairs - the DNA building blocks - which is about 50 times fewer than a pine tree. By the same token, the poplar has four times as many DNA as Arabidopsis, a small model plant whose genome was cracked six years ago.

In May 2002, the international consortium began the project to determine the poplar’s genome. To do this, they used a female poplar from the banks of the Nisqually River in the state of Washington (USA). Since then, the researchers have determined the 485 million base pairs on the 19 poplar chromosomes and have identified more than 45,000 possible genes.

Scientists led by Yves Van de Peer have compared the genes of the poplar with those of Arabidopsis by using sophisticated computer programs. They’ve been able to show that for about 10% of the poplar genes there are no homologue genes in Arabidopsis. This is a first step toward determining the genetic difference between a tree (poplar) and a herb (Arabidopsis).

The pace of evolution

By comparing the genomes of various plants, bioinformaticians are discovering new things about the evolution of the poplar.

Scientists know that the lines of descent of the poplar and Arabidopsis began to evolve in different directions some 100 to 120 million years ago. The researchers have determined that a doubling of a large part of the poplar’s genes has occurred twice in history. One of these duplications happened at about the time the Arabidopsis line of descent went its separate way; the second duplication was much more recent.

From the comparison of the genomes of the poplar and Arabidopsis, it is also clear that the DNA of Arabidopsis has evolved further than that of the poplar. Thus, evolution takes place at a different tempo in different plants.

A variety of applications

With the new data, molecular biologists, like Wout Boerjan and his research team, can set to work to discover the activities the genes are responsible for. This fundamental research can provide a wealth of information about how trees function, and it can also provide answers to general biology questions. In fact, a lot of the reactions and functions in plants - and thus in trees - are also found in humans and animals.

Furthermore, this research can be applied very concretely - to optimize bio-ethanol production, for example. Wood consists largely of cellulose and hemicellulose, the raw materials for bio-ethanol. However, these materials are locked up in the lignified cell wall and are therefore difficult to access for conversion to bio-ethanol. Wout Boerjan and his team are investigating which genes are important for wood formation and how they might genetically modify the formation of the cell wall to make cellulose and hemicellulose more accessible.

Knowledge of the poplar genome is also important in fields like ecology. In-depth genetic knowledge enables researchers to modify trees genetically to the benefit of people and the environment. The genome sequence can contribute to strategies for improving trees more quickly or for modifying them genetically. Trees are the lungs of the earth - but they can be modified, for example, so that they fix CO2 - the major greenhouse gas - more efficiently. New tree varieties can also be made so that, for example, their wood is better suited for paper production.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: Arabidopsis Bio-Ethanol DNA

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>