Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poplar DNA code cracked - new possibilities for sustainable energy

15.09.2006
Sustainable or renewable energy - in the form of bio-ethanol, for example - can be produced for us by trees.

The influence trees have on our daily life is enormous. Forests cover 30% of the world’s land area, accommodate two thirds of life on earth, and are responsible for 90% of the biomass on solid ground.

Now, an international consortium, which includes researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University, has succeeded in unraveling the first tree genome - that of the poplar. Moreover, their research indicates that the poplar has about 45,000 genes. This knowledge is a first step toward being able to make trees grow faster or make them easier to process into paper or energy.

The research results are being published this week in the authoritative journal Science.

... more about:
»Arabidopsis »Bio-Ethanol »DNA

Trees are jacks-of-all-trades

It’s difficult to overestimate the importance of trees as providers of clean air as well as raw material for bio-energy, paper, furniture and other useful objects. A lot of the properties that trees possess are not found in other plants, like their abilities to produce large quantities of wood, to synchronize their growth with the seasons, and to adapt to changing environmental conditions. They need these properties because they must be able to survive for many years in the same place.

Poplars cover more than 75 million hectares worldwide, nearly 7 million of which are cultivated for timber production on the one hand (about 4 million hectares) and for environmental purposes on the other hand (about 3 million hectares).

It’s in the genes...

Because the size of its genome is relatively limited, the poplar serves as a model organism for trees. Populus trichocarpa (or black cottonwood, the largest American poplar) has ‘only’ 485 million base pairs - the DNA building blocks - which is about 50 times fewer than a pine tree. By the same token, the poplar has four times as many DNA as Arabidopsis, a small model plant whose genome was cracked six years ago.

In May 2002, the international consortium began the project to determine the poplar’s genome. To do this, they used a female poplar from the banks of the Nisqually River in the state of Washington (USA). Since then, the researchers have determined the 485 million base pairs on the 19 poplar chromosomes and have identified more than 45,000 possible genes.

Scientists led by Yves Van de Peer have compared the genes of the poplar with those of Arabidopsis by using sophisticated computer programs. They’ve been able to show that for about 10% of the poplar genes there are no homologue genes in Arabidopsis. This is a first step toward determining the genetic difference between a tree (poplar) and a herb (Arabidopsis).

The pace of evolution

By comparing the genomes of various plants, bioinformaticians are discovering new things about the evolution of the poplar.

Scientists know that the lines of descent of the poplar and Arabidopsis began to evolve in different directions some 100 to 120 million years ago. The researchers have determined that a doubling of a large part of the poplar’s genes has occurred twice in history. One of these duplications happened at about the time the Arabidopsis line of descent went its separate way; the second duplication was much more recent.

From the comparison of the genomes of the poplar and Arabidopsis, it is also clear that the DNA of Arabidopsis has evolved further than that of the poplar. Thus, evolution takes place at a different tempo in different plants.

A variety of applications

With the new data, molecular biologists, like Wout Boerjan and his research team, can set to work to discover the activities the genes are responsible for. This fundamental research can provide a wealth of information about how trees function, and it can also provide answers to general biology questions. In fact, a lot of the reactions and functions in plants - and thus in trees - are also found in humans and animals.

Furthermore, this research can be applied very concretely - to optimize bio-ethanol production, for example. Wood consists largely of cellulose and hemicellulose, the raw materials for bio-ethanol. However, these materials are locked up in the lignified cell wall and are therefore difficult to access for conversion to bio-ethanol. Wout Boerjan and his team are investigating which genes are important for wood formation and how they might genetically modify the formation of the cell wall to make cellulose and hemicellulose more accessible.

Knowledge of the poplar genome is also important in fields like ecology. In-depth genetic knowledge enables researchers to modify trees genetically to the benefit of people and the environment. The genome sequence can contribute to strategies for improving trees more quickly or for modifying them genetically. Trees are the lungs of the earth - but they can be modified, for example, so that they fix CO2 - the major greenhouse gas - more efficiently. New tree varieties can also be made so that, for example, their wood is better suited for paper production.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: Arabidopsis Bio-Ethanol DNA

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>