California vineyard uses high-tech chemistry to choose optimum picking time for grapes

The winery has turned to spectroscopy and chromatography to evaluate aroma, color, taste and mouthfeel of grapes, according to Michael Cleary, senior manager of grape and wine chemistry at E & J Gallo Winery, who described the firm's Grape Assessment Program at the 232nd national meeting of the American Chemical Society, the world's largest scientific society. Annual California wine production is currently a $16.5 billion industry.

Chromatography is a laboratory process for chemically separating mixtures into their component parts. Using this process, grapes can be analyzed for their molecular makeup. Molecules indicative of aroma, taste and feel to the palate can be identified and the grapes then harvested when these molecules are at their highest concentrations, Cleary explains.

The purpose of using analytical chemistry testing, he says, is to complement historical time-consuming — though still useful — evaluation methods like chewing the grapes to best determine when to pick them. “It takes good grapes to make good wine and we're trying to improve our predictions of when to harvest,” he says. The pharmaceutical, petroleum, food and beverage industries, and others also use technologies like chromatography to assess their products, he adds.

Cleary's presentation is one of four papers in a Chemistry of Wine symposium, to be held Sunday afternoon, Sept. 10, and sponsored by the ACS Younger Chemists Committee. The other papers deal with wine flavor chemistry, an overview of the chemistry of winemaking and the world of the winemaking consultant.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors