Ethnicity and Cancer Susceptibility

The findings published in Nature Genetics have implications for pharmacogenetics, the study of how inherited variations may affect drug metabolism and response, and present a target for future ‘designer’ cancer therapies.

The p53 tumor-suppressor protein removes damaged cells by a programmed cell death (apoptosis). When the p53 gene is mutated – as it is in approximately half of all human cancers – damaged cells do not die, but rather continue to grow and divide and eventually form a tumor. The two most common polymorphic forms of p53 are p53Pro72 and p53Arg72 and the distribution varies in different ethnic groups. The two forms differ by just one amino acid in the protein sequence. Several years ago, the LICR team discovered that the ability of p53 to control apoptosis is regulated by the ASPP family of proteins.

In this study, the investigators showed that the ASPP family preferentially regulates the p53Pro72 over p53Arg72 form. These results suggest that ASPP protein levels determine cancer susceptibility in people with the p53Pro72 form, the prevalence of which is linked closely to latitude.

According to Professor Xin Lu, the senior author of the study and Director of the LICR Branch, the occurrence of the p53Pro72 form is highest in ethnic populations from around the equator. “It’s really interesting to speculate whether the increased exposure to DNA-damaging ultraviolet radiation has resulted in the need for a second level of p53-regulation. The results are important for furthering our understanding of how p53, the tumor suppressor, is regulated, and also offers intriguing hints about how these regulatory mechanisms might have evolved.”

While speculations about how the mechanism evolved are largely academic at this stage, Professor Lu says the findings have practical applications for future cancer therapies and the growing field of pharmacogenetics. “It’s not hard to imagine a scenario in the future where we might examine the p53 sequence of a cancer patient as part of tailoring an individualized therapeutic strategy. If the patient has p53Pro72, then she might get a specific therapy that alters ASPP protein levels to re-activate p53’s anti-cancer function. If the patient has p53Arg72, we know the therapy would be less effective.”

Media Contact

Sarah White alfa

More Information:

http://www.licr.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors