Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethnicity and Cancer Susceptibility

11.09.2006
Researchers from the UCL Branch of the global Ludwig Institute for Cancer Research (LICR) have uncovered how a genetic variation present in ethnic groups from around the equator may influence cancer susceptibility.

The findings published in Nature Genetics have implications for pharmacogenetics, the study of how inherited variations may affect drug metabolism and response, and present a target for future ‘designer’ cancer therapies.

The p53 tumor-suppressor protein removes damaged cells by a programmed cell death (apoptosis). When the p53 gene is mutated - as it is in approximately half of all human cancers - damaged cells do not die, but rather continue to grow and divide and eventually form a tumor. The two most common polymorphic forms of p53 are p53Pro72 and p53Arg72 and the distribution varies in different ethnic groups. The two forms differ by just one amino acid in the protein sequence. Several years ago, the LICR team discovered that the ability of p53 to control apoptosis is regulated by the ASPP family of proteins.

In this study, the investigators showed that the ASPP family preferentially regulates the p53Pro72 over p53Arg72 form. These results suggest that ASPP protein levels determine cancer susceptibility in people with the p53Pro72 form, the prevalence of which is linked closely to latitude.

... more about:
»ASPP »p53 »p53Pro72

According to Professor Xin Lu, the senior author of the study and Director of the LICR Branch, the occurrence of the p53Pro72 form is highest in ethnic populations from around the equator. “It’s really interesting to speculate whether the increased exposure to DNA-damaging ultraviolet radiation has resulted in the need for a second level of p53-regulation. The results are important for furthering our understanding of how p53, the tumor suppressor, is regulated, and also offers intriguing hints about how these regulatory mechanisms might have evolved.”

While speculations about how the mechanism evolved are largely academic at this stage, Professor Lu says the findings have practical applications for future cancer therapies and the growing field of pharmacogenetics. “It’s not hard to imagine a scenario in the future where we might examine the p53 sequence of a cancer patient as part of tailoring an individualized therapeutic strategy. If the patient has p53Pro72, then she might get a specific therapy that alters ASPP protein levels to re-activate p53’s anti-cancer function. If the patient has p53Arg72, we know the therapy would be less effective.”

Sarah White | alfa
Further information:
http://www.licr.org

Further reports about: ASPP p53 p53Pro72

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>