Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists crack genetic secrets of human egg

The human egg's ability to transform into a new life, or into new cells that may someday save lives, is well documented. The mystery lies in the mechanics - in how a single cell can transform so nimbly.

Scientists at Michigan State University report this week in the Proceedings of the National Academy of Sciences that they have identified genes unique to the human egg. The identification opens the way to understanding these genes' functions, which may lead to solving problems from infertility to degenerative diseases.

"What's in the egg to have that power?" asked Jose Cibelli, MSU professor of physiology and animal science. "Some of those genes are responsible for the magic trick that the egg has. This paper takes a peek at what genes are in the egg waiting to make these changes."

Combined with sperm, the egg divides and organizes cells to ultimately create a human being.

... more about:
»Human »stem cells »thousand

Combined with technology, the unfertilized egg might be coaxed to produce other specific cells, including stem cells, which can be directed to grow into new tissue. This potential could be used to combat diseases.

Cibelli said his team's mission is to grow stem cells without using fertilized embryos, which can be controversial. This work used only unfertilized human eggs that were obtained from women seeking fertility treatment at a clinic in Santiago, Chile. Women at the clinic must be reproductively healthy, no older than 35, and the cause of infertility must lie within the man. This presented the availability of exceptionally healthy eggs, Cibelli said. All the donors granted informed consent for their surplus eggs to be used for this research.

Cibelli worked with researchers in Chile to extract the RNA from the unfertilized eggs soon after they were harvested. That material (a treasure of genetic information,) was frozen and shipped to MSU.

Cibelli's team, Arif Murat Kocabas, Pablo Ross, Zeki Beyhan and Robert Halgren, started analyzing the thousands of genes represented in the human egg to identify those which are unique to the egg. They teamed with Beth Israel Deaconess Medical Center at Harvard Medical School in Boston to work with sophisticated bioinformatics software.

To make a comparison that would show which genes were uniquely active in the human egg, they used RNA of all parts of the human body - except that of the ovaries, where eggs are produced.

Then the computer analysis began. In a highly sophisticated game of match, every gene in the egg that was found in other tissues was eliminated, so that only unique genes remained.

Cibelli said that the team identified 5,331 human genes that are overexpressed in the egg. Of those, 1,430 are mysteries - their function unknown.

The group also compared the human egg genes with those of a mouse as well as human and mouse embryonic stem cells. On the final intersection, 66 genes were found to be common between the four sets of data.

"There are thousands of genes that are redundant. We found about one in a thousand genes that are unique to the eggs - and some of them, they don't have a known function yet," Cibelli said. "Now we can clone these genes and put them into cells and see if they may have a role in the creation of stem cells - without fertilization or destruction of human embryos."

Cibelli believes some of those genes know the big secrets - such as when a cell should slow down and later become a cell that can grow into any cell of the human body. The computer work of this preliminary search will give way to further experiments.

Sue Nichols | EurekAlert!
Further information:

Further reports about: Human stem cells thousand

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>