Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Architects of the envelope: scientists discover an essential nucleus-building protein

06.09.2006
Every time a cell divides, the protective envelope that surrounds the nucleus is broken down and rebuilt into two new ones. Envelopes are highly complex structures of membranes and proteins which must be precisely reassembled for the nuclei to function. Scientists at the Institute for Research in Biomedicine (IRB) in Barcelona, the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Pasteur Institute in Paris have discovered a protein that plays a crucial role in the assembly and structure of the nucleus. Their work appears in the September 5 issue of Current Biology.

The envelope acts as a barrier between the outer cell compartment, called the cytoplasm, and DNA stored in the cell nucleus. It regulates which molecules are allowed to pass back and forth between the two compartments. Most of this traffic passes through basket-shaped passageways called nuclear pores, which consist of intricately-woven proteins. “We haven't yet identified all the molecules in the nuclear envelope, and many questions remain about the process by which molecules are granted or denied passage,” says Peter Askjaer of IRB.

The new study shows that a protein called MEL-28 is a component of nuclear pores in the worm C. elegans, one of biology's most important model organisms. More importantly, it reveals that MEL-28 is one of the key architects as bits of membrane and proteins are drawn together to build new envelopes.

When scientists blocked the activity of MEL-28, they discovered that patches of membranes attached themselves to DNA but couldn't seal themselves off into a complete envelope. A step-by-step analysis showed that without the protein, other molecules are not drawn together properly as envelopes are rebuilt. The components were scrambled; pores were no longer built, and the wrong molecules were able to get access to DNA. Because MEL-28 remains attached to DNA during the entire process of cell division, the scientists believe it plays a crucial role early in the formation of the envelope.

... more about:
»DNA »Membrane »mel-28

MEL-28 has a close relative in human cells; one of the researchers’ future projects will be to examine whether this molecule plays a similar role in our own species. Oddly-shaped nuclear envelopes are seen in human genetic diseases such as progeria, a rare condition that causes affected children to age prematurely, and some types of muscular dystrophies. “Understanding how the nuclear envelope forms in the first place may eventually help us understand how changes in it can cause these diseases and potentially how they can be treated,” says Askjaer.

Sarah Sherwood | alfa
Further information:
http://www.irbbarcelona.org
http://www.irbbarcelona.org/index.php/en/news-events/irb-news-events

Further reports about: DNA Membrane mel-28

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>