Who gives stem cells their marching orders?

The development of an embryo from a few seemingly identical stem cells is a truly awesome feat of nature. As they bathe in a chemical soup they’ve manufactured themselves, stem cells react to subtle changes in chemical concentration, moving apart and taking on distinct identities. The million-dollar question: How do these cells – all initially the same, and exposed to the same environment – end up acting in such different ways, and in so orchestrated a manner? Understanding the choreography involved in this mysterious cellular signaling dance is crucial to our ability to coax stem cells to grow into specific tissues outside the body. And it is also important if we are to understand and perhaps correct what goes wrong when the chemical signaling system goes awry and stem cells become cancerous.

Research has shown that the chemical soup in the developing embryo contains a protein factor called Nodal, a powerful “master chef” that controls the activity of a whole host of important regulatory genes. The ISREC group showed that embryos already need Nodal when they attach to the wall of the uterus, to expand their pool of stem cells, and to let individual cells know where they are with respect to their neighbors. However, to carry out these tasks, the Nodal protein must be cleaved by specific enzymes. The enzymes act as a sort of regulatory switch, increasing the stem cells’ production of Nodal and preventing them from differentiating too early. Using mice engineered to carry an altered form of the protein, the ISREC group showed that if this switch is blocked, Nodal has the opposite effect: it triggers a cascade of molecular signals which stimulate differentiation.

In an article appearing in the September issue of the journal Developmental Cell, the researchers explain how cleaved and uncleaved forms of the Nodal protein act together to let the stem cells know where to move and what to become, once the embryo has reached a critical size. “Whole blocks of chemical “programs” are triggered in a cascading fashion, with Nodal there to maintain the source of a concentration gradient,” explains EPFL (Ecole Polytechnique Fédérale de Lausanne) professor Daniel Constam, lead researcher on the paper. Constam adds that cells respond differently depending on the amount of time they have been exposed to the Nodal signal.

One hallmark of aggressive cancer cells is their unspecified nature, similar to that of embryonic stem cells. Constam and his colleagues think that the signaling pathways used by tumor cells to migrate and invade new territory might be similar to those used in the embryonic development of the organism. Recent research from Northwestern University seems to confirm this, showing that aggressive melanoma cells secrete the Nodal protein. Understanding the activity of this gene in embryonic development may hold the key to finding a way to control its activity in tumor cells. “We need to separate the aspects of Nodal function, and how this protein is regulated by the cell at the molecular level,” says Constam. “The embryo holds the key to this understanding.”

Author Contact: Daniel Constam
Daniel.constam@isrec.ch
+41 21 692 5820

Media Contact

Mary Parlange alfa

More Information:

http://www.epfl.ch

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors