Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who gives stem cells their marching orders?

06.09.2006
Researchers from the Swiss Institute for Experimental Cancer Research (ISREC) have shown that a single gene involved in embryonic development is responsible for two seemingly contradictory activities -- maintaining stem cells after the embryo has implanted in the mother’s uterus, and later providing cues to direct their differentiation in a coordinated fashion when the time is ripe.

The development of an embryo from a few seemingly identical stem cells is a truly awesome feat of nature. As they bathe in a chemical soup they’ve manufactured themselves, stem cells react to subtle changes in chemical concentration, moving apart and taking on distinct identities. The million-dollar question: How do these cells – all initially the same, and exposed to the same environment – end up acting in such different ways, and in so orchestrated a manner? Understanding the choreography involved in this mysterious cellular signaling dance is crucial to our ability to coax stem cells to grow into specific tissues outside the body. And it is also important if we are to understand and perhaps correct what goes wrong when the chemical signaling system goes awry and stem cells become cancerous.

Research has shown that the chemical soup in the developing embryo contains a protein factor called Nodal, a powerful “master chef” that controls the activity of a whole host of important regulatory genes. The ISREC group showed that embryos already need Nodal when they attach to the wall of the uterus, to expand their pool of stem cells, and to let individual cells know where they are with respect to their neighbors. However, to carry out these tasks, the Nodal protein must be cleaved by specific enzymes. The enzymes act as a sort of regulatory switch, increasing the stem cells’ production of Nodal and preventing them from differentiating too early. Using mice engineered to carry an altered form of the protein, the ISREC group showed that if this switch is blocked, Nodal has the opposite effect: it triggers a cascade of molecular signals which stimulate differentiation.

In an article appearing in the September issue of the journal Developmental Cell, the researchers explain how cleaved and uncleaved forms of the Nodal protein act together to let the stem cells know where to move and what to become, once the embryo has reached a critical size. “Whole blocks of chemical “programs” are triggered in a cascading fashion, with Nodal there to maintain the source of a concentration gradient,” explains EPFL (Ecole Polytechnique Fédérale de Lausanne) professor Daniel Constam, lead researcher on the paper. Constam adds that cells respond differently depending on the amount of time they have been exposed to the Nodal signal.

... more about:
»Chemical »Constam »Embryonic »Nodal

One hallmark of aggressive cancer cells is their unspecified nature, similar to that of embryonic stem cells. Constam and his colleagues think that the signaling pathways used by tumor cells to migrate and invade new territory might be similar to those used in the embryonic development of the organism. Recent research from Northwestern University seems to confirm this, showing that aggressive melanoma cells secrete the Nodal protein. Understanding the activity of this gene in embryonic development may hold the key to finding a way to control its activity in tumor cells. “We need to separate the aspects of Nodal function, and how this protein is regulated by the cell at the molecular level,” says Constam. “The embryo holds the key to this understanding.”

Author Contact: Daniel Constam
Daniel.constam@isrec.ch
+41 21 692 5820

Mary Parlange | alfa
Further information:
http://www.epfl.ch

Further reports about: Chemical Constam Embryonic Nodal

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>