Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome info from 'plant destroyers' could save trees, beans and chocolate

05.09.2006
Rapidly evolving genes encode substances that may debilitate plants
An international team of scientists has published the first two genome sequences from a destructive group of plant pathogens called Phytophthora--a name that literally means "plant destroyer." The more than 80 species of fungus-like Phytophthora (pronounced "fy-TOFF-thor-uh") attack a broad range of plants and together cost the agriculture, forestry and nursery industries hundreds of billions of dollars each year.

Even though Phytophthora are similar to fungi, most fungicides are ineffective at controlling them. The information gained from studying the genomic sequences of P. ramorum and P. sojae will help scientists devise strategies to combat not only these two species, but also other disease-causing Phytophtora.

The study appears in the Sept. 1 issue of the journal Science.

Phytophthora sojae, an endemic pathogen of soybeans, is responsible for $1 billion to $2 billion in losses worldwide each year. Phytophthora ramorum is associated with sudden oak death, a disease that has devastated the nursery industry and oak ecosystems in California, Oregon and Washington.More than 1 million native oak and tanoak trees have been lost to the disease.

... more about:
»Phytophthora »genes »species

In addition to soybean and oak, Phytophthora species cause disease in avocado, coconut, papaya, pineapple, potato, strawberry and watermelon, to name a few. The pathogen also destroys an estimated 450,000 tons of cocoa beans with a resulting $400 million loss in chocolate production each year.

The researchers found the pathogens have nearly twice as many genes as other fungal pathogens, and that more than 40 percent of the genes in each of the two species are undergoing rapid change. Many of the rapidly evolving genes encode toxins and other proteins that may debilitate plants.

"We speculate that the rapidly changing genes are being driven to evolve by pressure from the defense systems of the pathogens' host plants," said Virginia Bioinformatics Institute's Brett Tyler, the project's principal investigator.

"The Phytophthoras, in addition to their great economic importance, are fascinating organisms with very distinct and interesting biology," said Maryanna Henkart, NSF's division director for molecular and cellular biosciences, which helped fund the work. "These new genome sequences will contribute to our basic understanding of normal plant-microbe relationships as well as their roles in disease," she said.

Richard Vines | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: Phytophthora genes species

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>