Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate changes increase risk of plague

25.08.2006
Climate changes can lead to more cases of plague. Warmer springs and moister summers can create conditions that will increase the prevalence of the plague bacterium Yersina pestis in great gerbils in Central Asia. These are the facts of a scientific article published in this week’s edition of the American scientific journal PNAS, by Nils C. Stenseth, Professor of Biology at the University of Oslo.

"A temperature increase of one degree Celsius in spring may lead to a 50 percent increase in the prevalence of the plague bacterium," he stated to Uniforum, the University of Oslo’s own news bulletin.

Climate changes cannot lead to any new Black Death, but it is quite clear that a small increase in temperature may create more cases of bubonic plague than we have today,” said Professor Stenseth, who heads the international top-notch Centre for Ecological and Evolutionary Synthesis (CEES) at the University of Oslo. Using field data from a national surveillance programme which monitored the stock of gerbils in Kazakhstan from 1949-1995, and using new statistical techniques, Stenseth and his team found a clear connection between the prevalence of the bacterium Yersina pestis in gerbils and climate variations.

"Samples from the annual rings of trees in Kazakhstan revealed that when the Black Death broke out there in the 14th century, the springs were warm and the summers were wet. Conditions were the same at the onset of the plague of the 1800’s in the same region," he explained. Stenseth obtained these figures from the Swiss researcher Jan Esper, one of the co-authors of the article. He is pleased that the researchers were given access to data from the health authorities’ surveillance programme in Kazakhstan.

After Kazakhstan initiated this surveillance programme in 1949, the cases of plague here decreased from over 100 cases a year to a few cases a year. In the past Stenseth and his colleagues have been close to finding out why the prevalence of the bacterium varies from year to year.

"In an article we wrote on this bacterium in Science in 2004, I had a feeling that there was a part of the variation which we couldn’t explain adequately. But we could have explained it, had we included climate as a cause of variation in the prevalence of this bacteria," Stenseth said to Uniforum.

Hence, one of the candidates of co-author Noelle I. Samia from the University of Iowa was given the task of running all the data of the surveillance programme through an advanced statistical analysis.

"The results of this work enabled us to write this article and conclude that climate changes have affected the prevalence of the bacterium which causes plague," Stenseth said. He was not sure what the conclusions would be after the investigations were finished.

"In the US, researchers have studied infectious diseases that are passed on among humans, indicating a similar connection between the prevalence of bacteria and climate changes, but this is the first time anyone has found a clear connection between the prevalence of the plague bacteria carried by gerbils and climate change," he stated.

"It was precisely in this area that the genetic and climatic conditions which brought on the Black Death and the Asian flu, emerged", he said.

It is the prevalence of the bacterium Yersina pestis which has been the subject of study for Nils Chr. Stenseth and his colleagues from the Universities of Norway, Kazakhstan, Switzerland, Denmark, Belgium, UK and the US. This bacterium lives in gerbils in the semideserts and steppes of Central Asia, and it is passed from gerbils to other animals and humans through flea bites. The gerbils themselves are not infected by the plague bacterium, they merely serve as hosts.

"In central Asia people can also catch the plague through infected camel meat, as camels often lay in places with gerbil burrows," Stenseth explained.

Thomas Evensen | alfa
Further information:
http://www.forskningsradet.no
http://www.pnas.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>