Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate changes increase risk of plague

Climate changes can lead to more cases of plague. Warmer springs and moister summers can create conditions that will increase the prevalence of the plague bacterium Yersina pestis in great gerbils in Central Asia. These are the facts of a scientific article published in this week’s edition of the American scientific journal PNAS, by Nils C. Stenseth, Professor of Biology at the University of Oslo.

"A temperature increase of one degree Celsius in spring may lead to a 50 percent increase in the prevalence of the plague bacterium," he stated to Uniforum, the University of Oslo’s own news bulletin.

Climate changes cannot lead to any new Black Death, but it is quite clear that a small increase in temperature may create more cases of bubonic plague than we have today,” said Professor Stenseth, who heads the international top-notch Centre for Ecological and Evolutionary Synthesis (CEES) at the University of Oslo. Using field data from a national surveillance programme which monitored the stock of gerbils in Kazakhstan from 1949-1995, and using new statistical techniques, Stenseth and his team found a clear connection between the prevalence of the bacterium Yersina pestis in gerbils and climate variations.

"Samples from the annual rings of trees in Kazakhstan revealed that when the Black Death broke out there in the 14th century, the springs were warm and the summers were wet. Conditions were the same at the onset of the plague of the 1800’s in the same region," he explained. Stenseth obtained these figures from the Swiss researcher Jan Esper, one of the co-authors of the article. He is pleased that the researchers were given access to data from the health authorities’ surveillance programme in Kazakhstan.

After Kazakhstan initiated this surveillance programme in 1949, the cases of plague here decreased from over 100 cases a year to a few cases a year. In the past Stenseth and his colleagues have been close to finding out why the prevalence of the bacterium varies from year to year.

"In an article we wrote on this bacterium in Science in 2004, I had a feeling that there was a part of the variation which we couldn’t explain adequately. But we could have explained it, had we included climate as a cause of variation in the prevalence of this bacteria," Stenseth said to Uniforum.

Hence, one of the candidates of co-author Noelle I. Samia from the University of Iowa was given the task of running all the data of the surveillance programme through an advanced statistical analysis.

"The results of this work enabled us to write this article and conclude that climate changes have affected the prevalence of the bacterium which causes plague," Stenseth said. He was not sure what the conclusions would be after the investigations were finished.

"In the US, researchers have studied infectious diseases that are passed on among humans, indicating a similar connection between the prevalence of bacteria and climate changes, but this is the first time anyone has found a clear connection between the prevalence of the plague bacteria carried by gerbils and climate change," he stated.

"It was precisely in this area that the genetic and climatic conditions which brought on the Black Death and the Asian flu, emerged", he said.

It is the prevalence of the bacterium Yersina pestis which has been the subject of study for Nils Chr. Stenseth and his colleagues from the Universities of Norway, Kazakhstan, Switzerland, Denmark, Belgium, UK and the US. This bacterium lives in gerbils in the semideserts and steppes of Central Asia, and it is passed from gerbils to other animals and humans through flea bites. The gerbils themselves are not infected by the plague bacterium, they merely serve as hosts.

"In central Asia people can also catch the plague through infected camel meat, as camels often lay in places with gerbil burrows," Stenseth explained.

Thomas Evensen | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>