Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study finds brain cell regulator is volume control, not on/off switch

21.08.2006
Novel proteomics study of neuronal activity yields surprising results

UC Davis researchers have discovered that proteins that regulate brain-cell activity by controlling the flow of potassium ions behave more like volume controls on stereos rather than on/off power switches. The research, which appears in the 19 August issue of Science, provides a new model for the behavior of critical gatekeeper proteins found in neuronal membranes.

"We've shown that brains cells regulate activity in an incremental way, with thousands of different possible levels of activity," explained James Trimmer, senior author of the paper and professor of medical pharmacology and toxicology at UC Davis School of Medicine. He and his colleagues studied an ion channel that controls neuronal activity called Kv2.1, a type of voltage-gated potassium channel that is found in every neuron of the nervous system.

"Our work showed that this channel can exist in millions of different functional states, giving the cell the ability to dial its activity up or down depending on the what's going on in the external environment," said Trimmer. This regulatory phenomenon is called 'homeostatic plasticity' and it refers, in this case, to the channel protein's ability to change its function in order to maintain optimal electrical activity in the neuron in the face of large changes within the brain or the animal's environment. "It's an elegant feedback system," he added.

For years, scientists have attempted to study how neurons regulate the function of potassium ion channels -- pore-like openings in cell membranes that control the flow of potassium ions into the cell -- with limited success. The current study is the first to combine mass spectrometry-based proteomics and ion channel biophysics to the study of living brain cells. "This is an important biological question that couldn't have been answered any other way," Trimmer said.

Most cells in the body can get by with on/off-like switches, allowing them grow and proliferate when needed. In fact, examples of these 'switches' include the well-studied products of oncogenes, proteins that get stuck in the 'on' position and cause cancer. Brain cells, however, must multi-task, receiving and processing signals from various sources, both inside and outside the body. "This ability to deal with a variety of signals involves some fairly sophisticated and subtle regulation of neuronal activity," Trimmer said.

Scientists have long known that potassium channels are crucial to the normal workings of brain cells. Neurons respond to stimuli, such as noise from the environment or chemical messengers from different parts of the body, by conducting weak electric currents across their membranes. This is possible because of an unequal distribution of charged ions, or atoms, on either side of the nerve cell membrane. Voltage-gated potassium channels regulate the passing of potassium ions across these membranes in response to changes in electric signal.

Brain cell activity is diminished when potassium channels are open. Closed channels lead to an increase in neuron excitability. Certain kinds of snake venom exploit this mechanism by blocking potassium channels and causing seizures. Likewise, defects in potassium channels have been associated with epilepsy and reduced brain development, as well as neurodegenerative disorders similar to Alzheimer's and Parkinson's diseases.

The type of potassium ion channel examined in the current study, Kv2.1, has been shown in studies by assistant research scientist Hiroaki Misonou to be highly regulated in response to epileptic seizures, stroke, and anesthesia.

Trimmer and his colleagues are the first to use a mass spectrometry technique called SILAC (stable isotope labeling with amino acids in cell culture) to study ion channels in brain cells. The problem for researchers has been that while mass spectrometry gives incredibly accurate measures of mass, quantifying amounts of a protein in different samples can be difficult. SILAC allows scientists to add additional atomic weight to one sample so that two different samples can be analyzed in a given run, allowing for precise measurements of quantity. The 'mass tag' separates the two samples--the experimental and control--on the mass spectrometry read out.

Using this technique, postdoctoral fellow Kang-Sik Park revealed 16 sites where the protein is modified by the cell by via addition of a phosphate group. Further study--in which each of the sites is removed to reveal its role in modulation-- followed by careful biophysical analyses of channel function by postdoctoral fellow Durga Mohapatra, revealed that seven of these sites were involved in the regulation of neuronal activity. Since each site can be regulated independently on the four channel subunits, the neuron can generate a huge (>1018) number of possible forms of the channel.

Using this mechanism, Kv2.1 channels are quickly modified, even mimicking the activity of other potassium ion channels. "The beauty of doing it with a single protein is that it is already there and can change in a matter of minutes. It would take hours for the cell to produce an entirely different potassium channel," Trimmer explained.

Based on these results, Trimmer and his colleagues hypothesize that parts of the Kv2.1 channel protein interact in ways that make it either easier or harder for it to change from closed to open. The protein, they believe, can exist in either loose states that require low amounts of energy, or voltage, to change from one state to another or a locked-down state that requires lots of energy (high voltage) to open or close. The number and position of phosphate molecules are what determine the amount of voltage required to open the channel.

The next step will be to determine how brain neurons regulate the addition and removal of phosphates at individual sites on the Kv2.1 protein during normal animal behavior. This involves proteomic analysis of Kv2.1 from different brain regions after stimulation with light, sound and with different learning paradigms. Trimmer and colleagues will also explore the pharmacological modulation of Kv2.1 phosphorylation in therapeutic intervention for neurological and psychiatric disorders.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>