Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study finds brain cell regulator is volume control, not on/off switch

21.08.2006
Novel proteomics study of neuronal activity yields surprising results

UC Davis researchers have discovered that proteins that regulate brain-cell activity by controlling the flow of potassium ions behave more like volume controls on stereos rather than on/off power switches. The research, which appears in the 19 August issue of Science, provides a new model for the behavior of critical gatekeeper proteins found in neuronal membranes.

"We've shown that brains cells regulate activity in an incremental way, with thousands of different possible levels of activity," explained James Trimmer, senior author of the paper and professor of medical pharmacology and toxicology at UC Davis School of Medicine. He and his colleagues studied an ion channel that controls neuronal activity called Kv2.1, a type of voltage-gated potassium channel that is found in every neuron of the nervous system.

"Our work showed that this channel can exist in millions of different functional states, giving the cell the ability to dial its activity up or down depending on the what's going on in the external environment," said Trimmer. This regulatory phenomenon is called 'homeostatic plasticity' and it refers, in this case, to the channel protein's ability to change its function in order to maintain optimal electrical activity in the neuron in the face of large changes within the brain or the animal's environment. "It's an elegant feedback system," he added.

For years, scientists have attempted to study how neurons regulate the function of potassium ion channels -- pore-like openings in cell membranes that control the flow of potassium ions into the cell -- with limited success. The current study is the first to combine mass spectrometry-based proteomics and ion channel biophysics to the study of living brain cells. "This is an important biological question that couldn't have been answered any other way," Trimmer said.

Most cells in the body can get by with on/off-like switches, allowing them grow and proliferate when needed. In fact, examples of these 'switches' include the well-studied products of oncogenes, proteins that get stuck in the 'on' position and cause cancer. Brain cells, however, must multi-task, receiving and processing signals from various sources, both inside and outside the body. "This ability to deal with a variety of signals involves some fairly sophisticated and subtle regulation of neuronal activity," Trimmer said.

Scientists have long known that potassium channels are crucial to the normal workings of brain cells. Neurons respond to stimuli, such as noise from the environment or chemical messengers from different parts of the body, by conducting weak electric currents across their membranes. This is possible because of an unequal distribution of charged ions, or atoms, on either side of the nerve cell membrane. Voltage-gated potassium channels regulate the passing of potassium ions across these membranes in response to changes in electric signal.

Brain cell activity is diminished when potassium channels are open. Closed channels lead to an increase in neuron excitability. Certain kinds of snake venom exploit this mechanism by blocking potassium channels and causing seizures. Likewise, defects in potassium channels have been associated with epilepsy and reduced brain development, as well as neurodegenerative disorders similar to Alzheimer's and Parkinson's diseases.

The type of potassium ion channel examined in the current study, Kv2.1, has been shown in studies by assistant research scientist Hiroaki Misonou to be highly regulated in response to epileptic seizures, stroke, and anesthesia.

Trimmer and his colleagues are the first to use a mass spectrometry technique called SILAC (stable isotope labeling with amino acids in cell culture) to study ion channels in brain cells. The problem for researchers has been that while mass spectrometry gives incredibly accurate measures of mass, quantifying amounts of a protein in different samples can be difficult. SILAC allows scientists to add additional atomic weight to one sample so that two different samples can be analyzed in a given run, allowing for precise measurements of quantity. The 'mass tag' separates the two samples--the experimental and control--on the mass spectrometry read out.

Using this technique, postdoctoral fellow Kang-Sik Park revealed 16 sites where the protein is modified by the cell by via addition of a phosphate group. Further study--in which each of the sites is removed to reveal its role in modulation-- followed by careful biophysical analyses of channel function by postdoctoral fellow Durga Mohapatra, revealed that seven of these sites were involved in the regulation of neuronal activity. Since each site can be regulated independently on the four channel subunits, the neuron can generate a huge (>1018) number of possible forms of the channel.

Using this mechanism, Kv2.1 channels are quickly modified, even mimicking the activity of other potassium ion channels. "The beauty of doing it with a single protein is that it is already there and can change in a matter of minutes. It would take hours for the cell to produce an entirely different potassium channel," Trimmer explained.

Based on these results, Trimmer and his colleagues hypothesize that parts of the Kv2.1 channel protein interact in ways that make it either easier or harder for it to change from closed to open. The protein, they believe, can exist in either loose states that require low amounts of energy, or voltage, to change from one state to another or a locked-down state that requires lots of energy (high voltage) to open or close. The number and position of phosphate molecules are what determine the amount of voltage required to open the channel.

The next step will be to determine how brain neurons regulate the addition and removal of phosphates at individual sites on the Kv2.1 protein during normal animal behavior. This involves proteomic analysis of Kv2.1 from different brain regions after stimulation with light, sound and with different learning paradigms. Trimmer and colleagues will also explore the pharmacological modulation of Kv2.1 phosphorylation in therapeutic intervention for neurological and psychiatric disorders.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>