Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have you ever seen an elephant…… run?

18.08.2006
If an elephant is thundering towards you at 15mph you are probably not too concerned with the finer points of biomechanics or the thorny question about whether they are truly running or not. But for researchers, understanding these points and getting a clearer picture of how elephants move their seven tonnes of bulk at speed offers the potential to improve animal welfare, inform human biomechanics and even help in the design of large robots.

Dr John Hutchinson, a research leader at the UK’s Royal Veterinary College (RVC), has already shown that, contrary to previous studies and most popular opinion, elephants moving at speed appear to be running. Now with funding from the Biotechnology and Biological Sciences Research Council (BBSRC) his team is using Hollywood-style motion capture cameras combined with MRI and CT scans of elephants to build 3D computer models of elephant locomotion to show the forces and stresses at work on muscles, tendons and bones.


A young elephant steps out at Whipsnade Wild Animal Park while cameras record the movement of the disc shaped markers on its legs and back.

The research team has been working with elephants at UK wildlife and safari parks and will shortly travel to Africa and Thailand to study wild animals. Fifteen temporary markers are placed on the elephants’ joints and the animals then move past a motion capture camera, recording at 240 frames per second, at varying speeds. Back in the lab the researchers can then use the footage to reconstruct the rotations of the elephants’ joints on a computer, creating a 3D stick model of the animal.

The computer models are being used to establish how limb structure relates to elephant locomotion and to determine finally if elephants really can run – or in scientific terms, at some point do they have all their feet off the ground at the same time? Dr Hutchinson said: “We are particularly interested how elephants coordinate their limbs and working out which joints contribute most to the length and frequency of their steps. In examining whether elephants truly run or not we need to understand what limits their top speed. Is it the tendons and muscles having to withstand the impact of 7 tonnes of elephant or is it something else?”

This is not a trivial question as Dr Hutchinson explained: “A better understanding of elephant biomechanics offers the possibility for real animal welfare improvements. By developing ways to spot slight changes in gait and joint movements in captive elephants we can catch the early onset of osteomyelitis and arthritis. If these conditions are not treated early they can result in an elephant being put down.”

The research also informs other biomechanical studies as the elephant leg has surprising similarities to our own. Humans have the same structure of a straight leg with a long thigh and short foot. Studies of animal locomotion are also key to the design of effective walking robots. By understanding how evolution achieved the joint structure and limb coordination of an animal as large as an elephant we will be better able to construct our own man-made walking robots.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>