Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£2 Million Pound Grant to Revolutionise Drug Delivery Technologies

16.08.2006
Scientists from the Universities of Dundee and St Andrews have won a major new research grant to develop a completely new technology for delivering cell-by-cell medical treatments.

The researchers hope to develop new, non-invasive surgical techniques using ultrasound and laser technology which could be applied within the context of cancer and gene therapies.

Dr Paul Campbell, at the University of Dundee, and Professor Kishan Dholakia, of the University of St Andrews, have each been awarded more than £1 million through the UK ‘Basic Technology’ Programme, administered by the Engineering and Physical Sciences Research Council.

The grant announcement follows on from preliminary research undertaken by the Dundee-St Andrews collaboration over the past year, which achieved a notable breakthrough in 2005 in understanding how cancer cells can be targeted and destroyed by a single pulse of ultrasound energy using a `sniper rifle’ approach developed from military technology.

Dr Campbell and Professor Dholakia, together with colleagues at their respective institutions, are now developing the techniques learned from their previous research to create tools which will revolutionise the delivery of genes, drugs and therapeutic molecules to single cells and tissue samples.

This new technology - utilising ultrasonics and photonics - promises to deliver a quantum leap for biologists studying the cell’s chemical pathways or signals.

The two University teams are now planning to combine the most useful aspects of both the ultrasound and laser techniques into an automated benchtop device for laboratory use.

The basis of the new technology involves a somewhat unexpected property of light: when sharply focused, it can actually exert a tangible force on real, albeit microscopic, objects. The sharply focused light can act like a miniaturised hand, ‘grabbing’ hold of tiny objects, and controllably moving them to other locations, a process termed ‘optical tweezing’.

Using this process, the scientists can gather arrays of cells and load them with molecules of choice, such as DNA or some other therapeutic agent.

Dr Campbell said, ‘The over-riding objective for this project is to revolutionise the activation and delivery of genes, drugs and therapeutic molecules into live biological materials.

‘Developing a means to controllably deliver drugs at remote anatomical sites, yet in a very non-invasive fashion, is a significant challenge of heightened academic and industrial interest. This is underscored by the market for delivery technologies which is estimated to be around 30 billion dollars in the USA alone.’

The ultrasound-based approach the scientists explored in the `sniper rifle’ project last year has now been augmented by a new technique developed at St Andrews using laser technology.

‘This dual approach technology allows us, in principle, to inject any molecule into any cell. Indeed, we have shown that even genetic material can be introduced into cells using the laser-based approach with successful downstream biological effects,” said Professor Dholakia.

The Universities of Dundee and St Andrews jointly host the Institute of Medical Science and Technology, a research and development initiative concentrating on interface science (between biology, physics and engineering) for future interventional medical technologies.

The collaboration between these disciplines is a key factor in the new project being led by Dr Campbell and Professor Dholakia, with key figures including Professor Sir Alfred Cuschieri, University of Dundee Medical School, and Professor Andrew Riches and Dr Frank Gunn-Moore, both of St Andrews University, supporting the research.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>