Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£2 Million Pound Grant to Revolutionise Drug Delivery Technologies

16.08.2006
Scientists from the Universities of Dundee and St Andrews have won a major new research grant to develop a completely new technology for delivering cell-by-cell medical treatments.

The researchers hope to develop new, non-invasive surgical techniques using ultrasound and laser technology which could be applied within the context of cancer and gene therapies.

Dr Paul Campbell, at the University of Dundee, and Professor Kishan Dholakia, of the University of St Andrews, have each been awarded more than £1 million through the UK ‘Basic Technology’ Programme, administered by the Engineering and Physical Sciences Research Council.

The grant announcement follows on from preliminary research undertaken by the Dundee-St Andrews collaboration over the past year, which achieved a notable breakthrough in 2005 in understanding how cancer cells can be targeted and destroyed by a single pulse of ultrasound energy using a `sniper rifle’ approach developed from military technology.

Dr Campbell and Professor Dholakia, together with colleagues at their respective institutions, are now developing the techniques learned from their previous research to create tools which will revolutionise the delivery of genes, drugs and therapeutic molecules to single cells and tissue samples.

This new technology - utilising ultrasonics and photonics - promises to deliver a quantum leap for biologists studying the cell’s chemical pathways or signals.

The two University teams are now planning to combine the most useful aspects of both the ultrasound and laser techniques into an automated benchtop device for laboratory use.

The basis of the new technology involves a somewhat unexpected property of light: when sharply focused, it can actually exert a tangible force on real, albeit microscopic, objects. The sharply focused light can act like a miniaturised hand, ‘grabbing’ hold of tiny objects, and controllably moving them to other locations, a process termed ‘optical tweezing’.

Using this process, the scientists can gather arrays of cells and load them with molecules of choice, such as DNA or some other therapeutic agent.

Dr Campbell said, ‘The over-riding objective for this project is to revolutionise the activation and delivery of genes, drugs and therapeutic molecules into live biological materials.

‘Developing a means to controllably deliver drugs at remote anatomical sites, yet in a very non-invasive fashion, is a significant challenge of heightened academic and industrial interest. This is underscored by the market for delivery technologies which is estimated to be around 30 billion dollars in the USA alone.’

The ultrasound-based approach the scientists explored in the `sniper rifle’ project last year has now been augmented by a new technique developed at St Andrews using laser technology.

‘This dual approach technology allows us, in principle, to inject any molecule into any cell. Indeed, we have shown that even genetic material can be introduced into cells using the laser-based approach with successful downstream biological effects,” said Professor Dholakia.

The Universities of Dundee and St Andrews jointly host the Institute of Medical Science and Technology, a research and development initiative concentrating on interface science (between biology, physics and engineering) for future interventional medical technologies.

The collaboration between these disciplines is a key factor in the new project being led by Dr Campbell and Professor Dholakia, with key figures including Professor Sir Alfred Cuschieri, University of Dundee Medical School, and Professor Andrew Riches and Dr Frank Gunn-Moore, both of St Andrews University, supporting the research.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>