Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MUHC researchers develop new model to identify ovarian cancer genes

16.08.2006
Researchers from the MUHC have developed a new model to identify ovarian cancer genes. This innovative research, published in the journal Oncogene, is a significant step towards improving treatment for this devastating disease that kills more than two-thirds of people diagnosed.

"Our findings now provide tangible targets for effective drug development. Up to now, there has been little in the way of treatment options for this disease, which is one of the most lethal of cancers," says Dr. Patricia Tonin, MUHC cancer geneticist and associate professor of Medicine and Human Genetics at McGill University. "This model not only allows us to identify the specific human chromosome 3 genes responsible for affecting tumour growth, but also has great potential to pinpoint genes in the entire human genome that would be most affected by this process."

"Ovarian cancer studies have shown the alteration of hundreds of genes. The challenge is to identify those genes that affect ovarian cancer from those which don't. Our model can be used to do just that, so that we can focus our attention on those genes most likely to affect tumour growth."

Tonin, along with Dr. Mario Chevrette, MUHC molecular biologist and assistant professor of Surgery at McGill University, and colleagues at the Institut du cancer de Montréal and Centre-Hospitalier de l'Universite de Montreal (CHUM), used a novel DNA transfer technique to move DNA from a non-tumour cell line to a human ovarian cancer cell line. The newly created cell line was then assessed for its ability to form tumours. Ovarian cancer cells that took up the non-tumour DNA lost their ability to produce these tumours. Subsequent genetic analyses revealed that a group of genes located on chromosome 3 genes were responsible for converting the cancer cell line into a non-tumour cell line. In addition, specific genes elsewhere in the human genome were affected in this process, some of which were novel and others never before studied in ovarian cancer.

This research was funded in part by the Canadian Institutes of Health Research (CIHR). "Too many women die of ovarian cancer each year," says Dr. Philip Branton, Scientific Director of the CIHR Institute of Cancer Research. "This is ground-breaking work. The more we can understand about what causes tumours to develop and what stimulates their growth, the greater are our chances of targeted treatments for women diagnosed with ovarian cancer."

Ovarian cancer starts in the cells of the ovaries-the egg producing reproductive organs on either side of the womb. There are three main types of ovarian cancer: epithelial, germ and stromal. This year alone 2,300 new cases of ovarian cancer will be diagnosed and approximately 1,600 women will die from the disease.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health centre affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1,000 graduate and postdoctoral students, and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University-the Montreal Children's, Montreal General, Royal Victoria, and Montreal Neurological Hospitals, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge.

The Canadian Institutes of Health Research (CIHR) is the Government of Canada's agency for health research. CIHR's mission is to create new scientific knowledge and to catalyze its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to over 10,000 health researchers and trainees across Canada.

Ian Popple | MUHC
Further information:
http://www.cihr-irsc.gc.ca
http://www.nature.com/onc/journal/vaop/ncurrent/abs/1209821a.html
http://www.muhc.ca/research

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>