Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MUHC researchers develop new model to identify ovarian cancer genes

16.08.2006
Researchers from the MUHC have developed a new model to identify ovarian cancer genes. This innovative research, published in the journal Oncogene, is a significant step towards improving treatment for this devastating disease that kills more than two-thirds of people diagnosed.

"Our findings now provide tangible targets for effective drug development. Up to now, there has been little in the way of treatment options for this disease, which is one of the most lethal of cancers," says Dr. Patricia Tonin, MUHC cancer geneticist and associate professor of Medicine and Human Genetics at McGill University. "This model not only allows us to identify the specific human chromosome 3 genes responsible for affecting tumour growth, but also has great potential to pinpoint genes in the entire human genome that would be most affected by this process."

"Ovarian cancer studies have shown the alteration of hundreds of genes. The challenge is to identify those genes that affect ovarian cancer from those which don't. Our model can be used to do just that, so that we can focus our attention on those genes most likely to affect tumour growth."

Tonin, along with Dr. Mario Chevrette, MUHC molecular biologist and assistant professor of Surgery at McGill University, and colleagues at the Institut du cancer de Montréal and Centre-Hospitalier de l'Universite de Montreal (CHUM), used a novel DNA transfer technique to move DNA from a non-tumour cell line to a human ovarian cancer cell line. The newly created cell line was then assessed for its ability to form tumours. Ovarian cancer cells that took up the non-tumour DNA lost their ability to produce these tumours. Subsequent genetic analyses revealed that a group of genes located on chromosome 3 genes were responsible for converting the cancer cell line into a non-tumour cell line. In addition, specific genes elsewhere in the human genome were affected in this process, some of which were novel and others never before studied in ovarian cancer.

This research was funded in part by the Canadian Institutes of Health Research (CIHR). "Too many women die of ovarian cancer each year," says Dr. Philip Branton, Scientific Director of the CIHR Institute of Cancer Research. "This is ground-breaking work. The more we can understand about what causes tumours to develop and what stimulates their growth, the greater are our chances of targeted treatments for women diagnosed with ovarian cancer."

Ovarian cancer starts in the cells of the ovaries-the egg producing reproductive organs on either side of the womb. There are three main types of ovarian cancer: epithelial, germ and stromal. This year alone 2,300 new cases of ovarian cancer will be diagnosed and approximately 1,600 women will die from the disease.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health centre affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1,000 graduate and postdoctoral students, and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University-the Montreal Children's, Montreal General, Royal Victoria, and Montreal Neurological Hospitals, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge.

The Canadian Institutes of Health Research (CIHR) is the Government of Canada's agency for health research. CIHR's mission is to create new scientific knowledge and to catalyze its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to over 10,000 health researchers and trainees across Canada.

Ian Popple | MUHC
Further information:
http://www.cihr-irsc.gc.ca
http://www.nature.com/onc/journal/vaop/ncurrent/abs/1209821a.html
http://www.muhc.ca/research

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>