Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals details of mussels' tenacious bonds

15.08.2006
When it comes to sticking power, marine mussels are hard to beat. They can adhere to virtually all inorganic and organic surfaces, sustaining their tenacious bonds in saltwater, including turbulent tidal environments. Little is known, however, about exactly how the bivalves achieve this amazing feat.

In a paper to be published online the week of Aug. 14 by the Proceedings of the National Academy of Sciences, a Northwestern University research team sheds new light on the adhesive strategies of mussels, information that could be used to develop adherents or repellants for use in medical implants.

This is the first-ever single molecule study to focus on the key amino acid 3,4-L-dihydroxyphenylalanine (DOPA), a tyrosine derivative that is found in high concentration in the "glue" proteins of mussels.

The researchers, led by Phillip B. Messersmith, associate professor of biomedical engineering in the McCormick School of Engineering and Applied Science, attached single DOPA amino acids to an atomic force microscope tip and measured the strength of interaction between DOPA and inorganic and organic surfaces.

They found that on an inorganic metal oxide surface DOPA interacts with the substrate by a coordinated noncovalent interaction, which is over an order of magnitude stronger than hydrogen bonding but still completely reversible.

On an organic substrate, DOPA can form even stronger, and irreversible, covalent bonds when it is oxidized by seawater. This helps to explain the remarkable versatility of mussels to adhere strongly to many different materials.

On neither substrate could tyrosine alone mimic such a strong binding interaction, which highlights that the modification of tyrosine residues to form DOPA during mussel glue processing is critical.

"Our results point the way toward new applications for our mussel mimetic polymers," said Messersmith, who has designed a versatile two-sided coating that sticks securely to a surface and prevents cell, protein and bacterial buildup. "For example, we may be able to take advantage of the reactivity of oxidized DOPA to form covalent bonds between adhesive DOPA-containing polymers and human tissue surfaces."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>