Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expression of 'Blimp1' gene leads to the discovery of cells responsible for skin's sebaceous gland

14.08.2006
Mice may not get zits, but they do have oily skin. This week, new research on mice from Rockefeller University shows how the cells responsible for oil production develop, and uncovers clues about how stem cells renew and differentiate.

The research focuses on the skin’s sebaceous gland, which is linked to the hair shaft and secretes an oily mixture called sebum. But until today how the sebaceous gland is formed during development was a matter of debate: one group of scientists proposed that skin stem cells produce the gland and a second group suggested that it had its own progenitor cells. In new research, published in the August 11 issue of Cell, Elaine Fuchs, a Howard Hughes Medical Institute investigator at Rockefeller University, settles this argument, showing that at the site where the sebaceous gland adjoins the hair follicle, a unique population of cells exists whose sole job is to make, and maintain, the sebaceous gland.

"We were exploring the expression of a transcription factor called Blimp1, which had surfaced in a genetic screen that we had conducted." explains Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology and Development at Rockefeller. "We were surprised to find that Blimp1 was expressed in a small population of cells within the sebaceous gland. We knew these cells were skin keratinocytes but no one had ever described their existence and therefore, we had no clues about their relationship to the gland."

Valerie Horsley, a postdoc in the Fuchs lab and first author of the paper, had been interested in Blimp1’s role in hair follicle development, and had engineered mice that were missing the Blimp1 gene in their skin. "When the mice were born, they formed normal hair follicles, which was quite disappointing," says Horsley. "But when they were around one month of age I noticed that the mice started getting very oily skin."

The sebaceous glands in mice missing Blimp1 were much larger than in normal skin. This happens in another genetically altered mouse, one overexpessing the c-myc gene, which has been implicated in many different kinds of cancers. Horsley found that Blimp1 usually acts to repress c-myc expression, and in mice without Blimp1 c-myc expression was increased, causing the sebaceous gland to contain cells that divide more frequently. When Horsley tagged the Blimp1 positive cells and tracked them, she found that the daughters of the Blimp1 cells contribute to the entire gland. Also, when grown outside in culture, the cells that make Blimp1 can divide and self-renew, as well as make the cell types important for generating the oils of the sebaceous gland.

"The data show clearly that these cells are the progenitors for the entire sebaceous gland," says Horsley. "And Blimp1 is somehow controlling this progenitor population, regulating how many cells are allowed into the gland. This is the first molecular characterization of these cells."

"This study has implications for understanding sebaceous gland disorders ranging from acne to sebaceous cell cancers," says Fuchs. "And it not only gives us a handle on these novel resident stem cells, but also clues to how stem cells can control the balance of proliferation and differentiation in tissues."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>