Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expression of 'Blimp1' gene leads to the discovery of cells responsible for skin's sebaceous gland

14.08.2006
Mice may not get zits, but they do have oily skin. This week, new research on mice from Rockefeller University shows how the cells responsible for oil production develop, and uncovers clues about how stem cells renew and differentiate.

The research focuses on the skin’s sebaceous gland, which is linked to the hair shaft and secretes an oily mixture called sebum. But until today how the sebaceous gland is formed during development was a matter of debate: one group of scientists proposed that skin stem cells produce the gland and a second group suggested that it had its own progenitor cells. In new research, published in the August 11 issue of Cell, Elaine Fuchs, a Howard Hughes Medical Institute investigator at Rockefeller University, settles this argument, showing that at the site where the sebaceous gland adjoins the hair follicle, a unique population of cells exists whose sole job is to make, and maintain, the sebaceous gland.

"We were exploring the expression of a transcription factor called Blimp1, which had surfaced in a genetic screen that we had conducted." explains Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology and Development at Rockefeller. "We were surprised to find that Blimp1 was expressed in a small population of cells within the sebaceous gland. We knew these cells were skin keratinocytes but no one had ever described their existence and therefore, we had no clues about their relationship to the gland."

Valerie Horsley, a postdoc in the Fuchs lab and first author of the paper, had been interested in Blimp1’s role in hair follicle development, and had engineered mice that were missing the Blimp1 gene in their skin. "When the mice were born, they formed normal hair follicles, which was quite disappointing," says Horsley. "But when they were around one month of age I noticed that the mice started getting very oily skin."

The sebaceous glands in mice missing Blimp1 were much larger than in normal skin. This happens in another genetically altered mouse, one overexpessing the c-myc gene, which has been implicated in many different kinds of cancers. Horsley found that Blimp1 usually acts to repress c-myc expression, and in mice without Blimp1 c-myc expression was increased, causing the sebaceous gland to contain cells that divide more frequently. When Horsley tagged the Blimp1 positive cells and tracked them, she found that the daughters of the Blimp1 cells contribute to the entire gland. Also, when grown outside in culture, the cells that make Blimp1 can divide and self-renew, as well as make the cell types important for generating the oils of the sebaceous gland.

"The data show clearly that these cells are the progenitors for the entire sebaceous gland," says Horsley. "And Blimp1 is somehow controlling this progenitor population, regulating how many cells are allowed into the gland. This is the first molecular characterization of these cells."

"This study has implications for understanding sebaceous gland disorders ranging from acne to sebaceous cell cancers," says Fuchs. "And it not only gives us a handle on these novel resident stem cells, but also clues to how stem cells can control the balance of proliferation and differentiation in tissues."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>