Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research examines genetics of successful aging

14.08.2006
Scientists have identified genes related to reaching age 90 with preserved cognition, according to a study published in the September issue of the American Journal of Geriatric Psychiatry. The study, which was conducted at the University of Pittsburgh is among the first to identify genetic links to cognitive longevity.

"Successful aging has been defined in many ways, however, we focused on individuals who had reached at least 90 without significant decline in mental capacity," said lead researcher George S. Zubenko, M.D., Ph.D., professor of psychiatry and biological sciences at the University of Pittsburgh. "While this is a goal that many of us share, such a definition of 'successful aging' can be determined objectively and consistently across subjects--an important requirement of scientific studies."

While previous research has revealed that genes make important contributions to exceptional longevity, the goal of this study was to identify regions of the human genome that contributed, along with lifestyle factors, to reaching age 90 with preserved cognition.

The study involved 100 people age 90 and older who had preserved cognition as measured by clinical and psychometric assessments. Half of the subjects were male, half were female. Using a novel genome survey method, scientists compared the DNA of the study sample with that of 100 young adults, aged 18-25, who were matched for sex, race, ethnicity and geographic location. Particularly, Dr. Zubenko and his research team attempted to identify specific genetic sequences present in older individuals that may be linked to reaching older ages with preserved cognitive abilities, or conversely, specific genetic sequences present in younger individuals (and not present in those over age 90) that may impede successful aging. The study also looked at a variety of lifestyle factors, such as smoking and alcohol consumption, with the goal of eventually exploring the interactive effects of genes and lifestyle on successful aging.

The study identified nine genetic regions that were associated with successful aging, some of which affected men or women, but not both. "Historically women have lived longer than men on average, the prevalence of numerous serious diseases differs in men and women, and there are important differences in age-related physiological changes that occur between the sexes over the life span," said Dr. Zubenko. "It would not be surprising if the collection of genes that influences the capacity to reach old age with normal mental capacity differs somewhat for men and women." The majority of the successful aging or "SAG" regions overlapped with gene locations previously reported to show linkage to susceptibility genes for cardiovascular disorders, psychiatric disorders and the accumulation of tissue damage due to oxidative stress. The results of the study also highlighted the detrimental effects of cigarette smoking, excessive drinking and serious mental disorders on successful aging in both sexes.

"The finding that genetics, lifestyle decision making, and their interactions, may influence the ability to reach old age with preserved cognition is exciting," stated Dr. Zubenko. "Identifying such genetic and behavioral factors may hold promise for better understanding the aging process and perhaps one day enriching or extending the lives of other individuals."

Jocelyn Uhl Duffy | EurekAlert!
Further information:
http://www.upmc.edu
http://www.AJGPonline.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>