Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research examines genetics of successful aging

14.08.2006
Scientists have identified genes related to reaching age 90 with preserved cognition, according to a study published in the September issue of the American Journal of Geriatric Psychiatry. The study, which was conducted at the University of Pittsburgh is among the first to identify genetic links to cognitive longevity.

"Successful aging has been defined in many ways, however, we focused on individuals who had reached at least 90 without significant decline in mental capacity," said lead researcher George S. Zubenko, M.D., Ph.D., professor of psychiatry and biological sciences at the University of Pittsburgh. "While this is a goal that many of us share, such a definition of 'successful aging' can be determined objectively and consistently across subjects--an important requirement of scientific studies."

While previous research has revealed that genes make important contributions to exceptional longevity, the goal of this study was to identify regions of the human genome that contributed, along with lifestyle factors, to reaching age 90 with preserved cognition.

The study involved 100 people age 90 and older who had preserved cognition as measured by clinical and psychometric assessments. Half of the subjects were male, half were female. Using a novel genome survey method, scientists compared the DNA of the study sample with that of 100 young adults, aged 18-25, who were matched for sex, race, ethnicity and geographic location. Particularly, Dr. Zubenko and his research team attempted to identify specific genetic sequences present in older individuals that may be linked to reaching older ages with preserved cognitive abilities, or conversely, specific genetic sequences present in younger individuals (and not present in those over age 90) that may impede successful aging. The study also looked at a variety of lifestyle factors, such as smoking and alcohol consumption, with the goal of eventually exploring the interactive effects of genes and lifestyle on successful aging.

The study identified nine genetic regions that were associated with successful aging, some of which affected men or women, but not both. "Historically women have lived longer than men on average, the prevalence of numerous serious diseases differs in men and women, and there are important differences in age-related physiological changes that occur between the sexes over the life span," said Dr. Zubenko. "It would not be surprising if the collection of genes that influences the capacity to reach old age with normal mental capacity differs somewhat for men and women." The majority of the successful aging or "SAG" regions overlapped with gene locations previously reported to show linkage to susceptibility genes for cardiovascular disorders, psychiatric disorders and the accumulation of tissue damage due to oxidative stress. The results of the study also highlighted the detrimental effects of cigarette smoking, excessive drinking and serious mental disorders on successful aging in both sexes.

"The finding that genetics, lifestyle decision making, and their interactions, may influence the ability to reach old age with preserved cognition is exciting," stated Dr. Zubenko. "Identifying such genetic and behavioral factors may hold promise for better understanding the aging process and perhaps one day enriching or extending the lives of other individuals."

Jocelyn Uhl Duffy | EurekAlert!
Further information:
http://www.upmc.edu
http://www.AJGPonline.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>