Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genotoxic bacteria in the digestive tract

14.08.2006
Escherichia coli is a commensal bacterium, which lives peacefully in our digestive tract. However, certain strains are pathogenic and are frequently incriminated in a broad spectrum of infections, affecting both farmed animals and humans (diarrhoea, urinary tract infections, food poisoning, septicaemia, neonatal meningitis, etc.).

In this respect, E. coli is a model bacterium to study the continuum between commensal and pathogenic bacteria. Researchers at INRA in Toulouse, in collaboration with German universities in Würzburg and Göttingen and the Institut Pasteur in Paris, have shown for the first time that both commensal and pathogenic E. coli produce a substance which is toxic to the DNA in eukaryotic cells. The bacteria producing this toxin thus induce DNA breaks in host cells and disturb the cell cycle. This slowdown of eukaryotic cell proliferation may enhance bacterial colonization of the intestine. On the other hand, if these breaks are not repaired, they could give rise to a high level of mutations, which are the principal factors triggering cancer in man. The details of this work have been published in Science, August 11th 2006.

Colibactin, a new toxin which affects the host cell cycle

Certain strains of E. coli produce a toxin, which induces a toxic effect in host cells, characterised by gradual cell enlargement following the arrest of cell proliferation. INRA researchers in Toulouse, in collaboration with teams at the German universities of Würzburg and Göttingen and the Institut Pasteur in Paris, have demonstrated that these bacterial strains possess a "genomic island" in their genome, which contains all genes allowing the biosynthesis of a new toxin, which they have called "Colibactin". The researchers have shown that the bacteria producing this toxin induce serious lesions to the DNA of host cells, causing a blockade of the cell cycle of infected cells. Colibactin belongs to a new family of bacterial toxins, which are able to act on the cell cycle of eukaryotic cells. The INRA researchers have proposed to call this family the "cyclomodulins".

Colibactin is a non-protein toxin. The genes carried by the genomic island code for several enzymes belonging to the family of "polyketide synthetases" (PKS) and "nonribosomal polypeptide synthetases" (NRPS). Compounds arising from these biosynthetic pathways constitute a large family of natural products with a very broad range of biological activities and pharmacological properties. This family comprises numerous molecules which are of importance both agronomically (anti-parasite substances, such as avermectin) and medically (e.g. immunosuppressants, cholesterol-lowering agents, anticancer compounds and antibiotics (cyclosporine, lovastatin, bleomycin, erythromycin, etc.). This is the first time that an enzyme system of this type, producing a molecule active on eukaryote cells, has been characterised in E. coli, a bacterial species where genetic engineering is well mastered. This discovery provides a biotechnological key to producing new compounds of interest, and has been the subject of a patent application. It opens the way to novel therapeutic approaches as well as preventive opportunities.

Infectious diseases, cancer and anti-proliferative effects: is there a role for bacteria producing cyclomodulins?

The work reported in Science also raises an important question for public health. DNA double strand breaks are dangerous lesions affecting eukaryotic cells; if these are not repaired, they give rise to a high level of mutations, which are the principal triggers of cancer in man. Colibactin is produced by both commensal E. coli in the intestinal flora and pathogenic strains which are responsible for septicaemia, urinary tract infections and meningitis. The presence of these bacteria in the commensal flora may therefore constitute a predisposing factor for the development of certain cancers. Thus bacterial flora may participate in the development, differentiation and homeostasis of mucosa and hence the development of certain types of cancer, or protection against them.

Céline Goupil | alfa
Further information:
http://www.inra.fr
http://www.international.inra.fr/press/genotoxic_bacteria_in_the_digestive_tract

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>