Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire ‘barcode’ system speeds biodetection in the field

10.08.2006
Detecting biowarfare agents in the field will become a lot easier thanks to a new barcode system based on biosensing nanowires developed by Lawrence Livermore National Laboratory (LLNL) researchers.

The researchers, led by Jeffrey Tok of LLNL’s BioSecurity and Nanosciences Laboratory, built submicrometer layers of different metals including gold, silver and nickel that act as “barcodes” for detecting a variety of pathogens ranging from anthrax, smallpox and ricin to botulinum.

The team, led by LLNL and including researchers from Stanford University, the UC-Davis Center for Biophotonics and Nanoplex Technologies, used the multi-striped metallic nanowires in a suspended format to rapidly identify sensitive single and multiplex immunoassays that simulated biowarfare agents.

The researchers produced nanoscale wires by electrochemically depositing metals within the tiny cavities of porous mineral solids. They then layered the gold and silver in a specific way to produce nanowires with different characteristic stripe patterns depending on which pathogen they were trying to identify.

The reflection pattern and fluorescence from each stripe sequence can later be clearly recognized, similar to a barcode on a retail product.

“Antibodies of specific pathogens have been attached to the wires,” said Jeffrey Tok, principal author from LLNL. “This produces a small, reliable, sensitive detection system that can easily be taken into the field.”

The system not only applies to biowarfare agents, but could also be used during an outbreak of an infectious disease.

The research appears online in the journal Angewandte Chemie.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>